Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Spectral Survey of Black Hole Spin in Active Galactic Nuclei

    Thumbnail
    View/Open
    umi-umd-4861.pdf (3.966Mb)
    No. of downloads: 489

    Date
    2007-09-20
    Author
    Brenneman, Laura
    Advisor
    Reynolds, Christopher S.
    Metadata
    Show full item record
    Abstract
    This dissertation explores the question of whether broad iron lines from the accretion disk can be used as viable diagnostic tools for constraining black hole spin. We begin by giving an overview of the importance of black hole angular momentum as a signature of General Relativity and as a means of testing this theory in the strong-field limit. We discuss the anatomy of the typical black hole/accretion disk system, focusing on the complex environments of active galactic nuclei, and in particular Seyfert-1 systems which we pursue in this work. After developing a robust technique for fitting the continuum and absorption parameters through a rigorous analysis of the XMM-Newton spectrum of the Sy-1 galaxy NGC 4593, we then discuss a new model we have developed that fits broad emission lines from the inner accretion disk. This model, kerrdisk, is fully relativistic and allows the black hole spin to be a free parameter in the fit. Using this model, we carefully analyze the 350 ks XMM-Newton spectrum of the Sy-1 source MCG--6-30-15, which has the broadest and best-studied iron line observed to date. Fitting for the black hole spin in this source, we conclude that a > 0.987 to 90% confidence. We then extend our source list to analyze the XMM-Newton spectra of nine other radio-quiet Sy-1 AGN that have previously been observed to harbor broad iron lines. We find that, given enough photons and a broad line indicative of an origin in the inner disk where relativistic effects are important, our new model enables us to place robust constraints on black hole spin. Four of our sampled AGN meet the criteria necessary to constrain spin. Those constraints are given, along with the full spectral fit to each source. Interestingly, the spins of these sources range from moderate (a ~ 0.5−0.7) to very high (a > 0.95), and we do not find any AGN consistent with non-rotating black holes. For those objects that had marginal spin constraints or none at all, we discuss the spectral fits and the probable reasons for the lack of robustness of our results. This is the first ever survey of black hole spin in type-1 AGN.
    URI
    http://hdl.handle.net/1903/7597
    Collections
    • Astronomy Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility