Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial Evolution of Arbitrary Self-Replicating Cellular Automata

    Thumbnail
    View/Open
    umi-umd-4824.pdf (14.63Mb)
    No. of downloads: 775

    Date
    2007-08-22
    Author
    Pan, Zhijian
    Advisor
    Reggia, James
    Metadata
    Show full item record
    Abstract
    Since John von Neumann's seminal work on developing cellular automata models of self-replication, there have been numerous computational studies that have sought to create self-replicating structures or "machines". Cellular automata (CA) has been the most widely used method in these studies, with manual designs yielding a number of specific self-replicating structures. However, it has been found to be very difficult, in general, to design local state-transition rules that, when they operate concurrently in each cell of the cellular space, produce a desired global behavior such as self-replication. This has greatly limited the number of different self-replicating structures designed and studied to date. In this dissertation, I explore the feasibility of overcoming this difficulty by using genetic programming (GP) to evolve novel CA self-replication models. I first formulate an approach to representing structures and rules in cellular automata spaces that is amenable to manipulation by the genetic operations used in GP. Then, using this representation, I demonstrate that it is possible to create a "replicator factory" that provides an unprecedented ability to automatically generate a whole class of new self-replicating structures and that allows one to systematically investigate the properties of replicating structures as one varies the initial configuration, its size, shape, symmetry, and allowable states. This approach is then extended to incorporate multi-objective fitness criteria, resulting in production of diversified replicators. For example, this allows generation of target structures whose complexity greatly exceeds that of the seed structure itself. Finally, the extended multi-objective replicator factory is further generalized into a structure/rule co-evolution model, such that replicators with unspecified seed structures can also be concurrently evolved, resulting in different structure/rule combinations and having the capability of not only replicating but also carrying out a secondary pre-specified task with different strategies. I conclude that GP provides a powerful method for creating CA models of self-replication.
    URI
    http://hdl.handle.net/1903/7404
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility