Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance Measurement and Simulation of a Small Internal Combustion Engine

    Thumbnail
    View/Open
    umi-umd-4401.pdf (1.998Mb)
    No. of downloads: 11163

    Date
    2007-04-30
    Author
    Moulton, Nathan Lee
    Advisor
    Cadou, Christopher
    Metadata
    Show full item record
    Abstract
    This thesis describes performance testing of 3W Modellmotoren's 100i-B2 which is a two-stroke gasoline engine presently being used to power a commercially produced Unmanned Air Vehicle (NAVMAR's Mako). Since the engine was originally manufactured for use in radio controlled model aircraft, the only performance information provided by the manufacturer is its rated power output of 9.3 Hp at 8500 RPM. However, much more detailed information is required for the UAV application in order to select propellers and engine operating points that maximize the range, endurance, and load-carrying capacity. This thesis reports the first detailed characterization of this engine's performance in the open literature that includes measurements of power output, specific fuel consumption, exhaust and cylinder head temperatures, and exhaust gas composition as a function of engine speed. The measurements show that the peak power output is 9.32 Hp at 8500 RPM with a brake specific fuel consumption of 0.797 lb/Hp-hr. The maximum BSFC of 0.668 lb/Hp-hr is achieved during ¼ throttle operation at 6500 RPM with a power output level of 5.08 Hp. Exhaust gas composition measurements indicate that the carburetor controls mixture ratio effectively across the entire operating range of the engine unlike smaller model engines. A preliminary attempt was also made to simulate the engine numerically in order to identify areas where the engine design could be improved. The simulation suggests that while the engine's performance is near optimal, it might be possible to gain additional power by decreasing the exhaust port duration.
    URI
    http://hdl.handle.net/1903/6905
    Collections
    • Aerospace Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility