University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    BILAYER LIPID MEMBRANE (BLM) INTEGRATION INTO MICROFLUIDIC PLATFORMS WITH APPLICATION TOWARD BLM-BASED BIOSENSORS

    Thumbnail
    View/Open
    umi-umd-4364.pdf (12.36Mb)
    No. of downloads: 6397

    Date
    2007-04-27
    Author
    Hromada, Jr., Louis Paul
    Advisor
    DeVoe, Donald L
    Metadata
    Show full item record
    Abstract
    Bilayer Lipid Membranes (BLMs) have been widely used as an experimental tool to investigate fundamental cellular membrane physics and ion channel formation and transduction. Traditional BLM experimentation is usually performed in a macro-sized electrophysiology rig, which suffers from several well-known issues. First, BLMs have short lifetimes (typically on the order of tens of minutes to a few hours) and the laborious, irreproducible membrane formation process must be repeatedly applied for long-term testing. Second, stray capacitance inherent to traditional test rigs limits the temporal response leading, for example, to poor resolution in determining fast ion channel translocation events. Lastly, BLM testing is done within a single site format thus limiting throughput and increasing data collection time. To mitigate the above drawbacks, BLM technology and microfluidic platforms can be integrated to advance the state-of-the-art of BLM-based biosensor technology. Realization of BLM-based microfluidic biosensors can offer significant improvement towards sensor response characteristics (e.g. lower noise floor, increased time response). In addition, microfluidic biosensing chips can be fabricated with multiple BLM test sites that allow for parallel testing thus increasing data collection efficiency. Other benefits that microfluidics offer are: small reagent sensing volumes, disposable packaging, mass manufacturability, device portability for field studies, and lower device cost. Novel polymer microfluidic platforms capable of both in-situ and ex-situ BLM formation are described in this work. The platforms have been demonstrated for the controlled delivery of trans-membrane proteins to the BLM sites, and monitoring of translocation events through these ion channels using integrated thin film Ag/AgCl electrodes. The detailed design, fabrication, and characterization of various micro-fabricated BLM platforms is presented in this dissertation.
    URI
    http://hdl.handle.net/1903/6873
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility