Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Algorithms for Clustering and Interpolation of Large Spatial Data Sets

    Thumbnail
    View/Open
    umi-umd-4328.pdf (2.621Mb)
    No. of downloads: 2006

    Date
    2007-04-25
    Author
    Memarsadeghi, Nargess
    Advisor
    Mount, David M
    Metadata
    Show full item record
    Abstract
    Categorizing, analyzing, and integrating large spatial data sets are of great importance in various areas such as image processing, pattern recognition, remote sensing, and life sciences. For example, NASA alone is faced with huge data sets gathered from around the globe on a daily basis to help scientists better understand our planet. Many approaches for accurately clustering, interpolating, and integrating these data sets are very computationally expensive. The focus of my PhD thesis is on the development of efficient implementations of data clustering and interpolation methods for large spatial data sets, and the application of these methods to geostatistics and remote sensing. In particular, I have developed fast implementations of ISODATA clustering and kriging interpolation algorithms. These implementations derive their efficiency through the use of both exact and approximate computational techniques from computational geometry and scientific computing. My work on the ISODATA clustering algorithm employs the kd-tree data structure and the filtering algorithm to speed up distance and nearest neighbor calculations. In the case of kriging interpolation, I applied techniques from scientific computing including iterative methods, tapering, fast multipole methods, and nearest neighbor searching techniques. I also present an application of kriging interpolation method to the problem of data fusion of remotely sensed data.
    URI
    http://hdl.handle.net/1903/6839
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility