Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports from UMIACS
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Similarity Searching in Large Image Databases

    Thumbnail
    View/Open
    CS-TR-3388.ps (484.1Kb)
    No. of downloads: 249

    Auto-generated copy of CS-TR-3388.ps (386.6Kb)
    No. of downloads: 694

    Date
    1998-10-15
    Author
    Petrakis, Euripides G.M.
    Faloutsos, Christos
    Metadata
    Show full item record
    Abstract
    We propose a method to handle approximate searching by image content in large image databases. Image content is represented by attributed relational graphs holding features of objects and relationships between objects. The method relies on the assumption that a fixed number of ``labeled'' or ``expected'' objects (e.g., ``heart'', ``lungs'' etc.) are common in all images of a given application domain in addition to a variable number of ``unexpected'' or ``unlabeled'' objects (e.g., ``tumor'', ``hematoma'' etc.). The method can answer queries by example such as ``{\em find all X-rays that are similar to Smith's X-ray}''. The stored images are mapped to points in a multidimensional space and are indexed using state-of-the-art database methods (R-trees). The proposed method has several desirable properties: (a) Database search is approximate so that all images up to a pre-specified degree of similarity (tolerance) are retrieved, (b) it has no ``false dismissals'' (i.e., all images qualifying query selection criteria are retrieved) and (c) it scales-up well as the database grows. We implemented the method and ran experiments on a database of synthetic (but realistic) medical images. The experiments showed that our method significantly outperforms sequential scanning by up to an order of magnitude. (Also cross-referenced as UMIACS-TR-94-134)
    URI
    http://hdl.handle.net/1903/682
    Collections
    • Technical Reports from UMIACS
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility