
Similarity Searching in Large Image DataBasesEuripides G.M. Petrakis�MUltimedia Systems Institute of Crete (MUSIC),Technical University of Crete,PO BOX 134 Chania, GR 73100 Greece.e-mail: petrakis@ced.tuc.gr Christos FaloutsosyInstitute for Systems Research (ISR) andDepartment of Computer ScienceUniversity of Maryland.e-mail: christos@cs.umd.eduAbstractWe propose a method to handle approximate searching by image content in large imagedatabases. Image content is represented by attributed relational graphs holding features ofobjects and relationships between objects. The method relies on the assumption that a �xednumber of \labeled" or \expected" objects (e.g., \heart", \lungs" etc.) are common in all imagesof a given application domain in addition to a variable number of \unexpected" or \unlabeled"objects (e.g., \tumor", \hematoma" etc.). The method can answer queries by example such as\�nd all X-rays that are similar to Smith's X-ray". The stored images are mapped to pointsin a multidimensional space and are indexed using state-of-the-art database methods (R-trees).The proposed method has several desirable properties: (a) Database search is approximate sothat all images up to a pre-speci�ed degree of similarity (tolerance) are retrieved, (b) it hasno \false dismissals" (i.e., all images qualifying query selection criteria are retrieved) and (c) itscales-up well as the database grows. We implemented the method and ran experiments on adatabase of synthetic (but realistic) medical images. The experiments showed that our methodsigni�cantly outperforms sequential scanning by up to an order of magnitude.Index Terms: image database, image retrieval by content, query by example, image contentrepresentation, attributed relational graph, image indexing, R-tree, similarity searching.1 IntroductionIn many applications, images comprise the vast majority of acquired and processed data. In remotesensing and astronomy, large amounts of image data are received by land stations for processing,�Please address all correspondence to this author. This research was partially funded by project DAIDALOS,ECUS008:9828, EC-US Exploratory Activity and partially by project MILORD A2024, under programme AIM ofthe EEC.yHis research was partially funded by the National Science Foundation under Grants IRI-9205273 and IRI-8958546(PYI), with matching funds from EMPRESS Software Inc. and Thinking Machines Inc.1

analysis and archiving. A similar need of processing, analysis and archiving of images has beenidenti�ed in applications such as cartography (images are analog or digitized maps) and meteorology(images are meteorological maps). In medicine, in particular, a large number of images of variousimaging modalities (e.g., Computer Tomography, Magnetic Resonance etc.) are produced dailyand used to support clinical decision making. The capabilities of the above application �elds canbe extended to provide valuable teaching, training and enhanced image interpretation support, bydeveloping techniques supporting the automated archiving and the retrieval of images by content.For example, in medicine, before making a diagnosis, a clinician could retrieve similar cases from themedical archive. Content-based retrievals would not only yield cases of patients with similar imageexaminations and similar diagnosis but also, cases of patients with similar image examinations anddi�erent diagnoses [42].To support queries by image content in an Image DataBase (IDB), all images must be an-alyzed prior to storage so that, descriptions of their content can be extracted and stored in thedatabase together with the original images. These descriptions are then used to search the IDBand to determine which images satisfy the query selection criteria. The e�ectiveness of an IDBsystem ultimately depends on the types and correctness of image content representations used, thetypes of image queries allowed and the e�ciency of search techniques implemented.Fast responses are essential to an IDB. An IDB system must employee searching methods thatare faster than sequential scanning methods, and which must \scale-up" well (i.e., their performanceremains consistently better than the performance of sequential scanning methods as the databasegrows).Query formulation must be
exible and convenient (as opposed to queries expressed by acommand-oriented query language like SQL). Ideally, queries must be speci�ed through a graphicaluser interface, such as by example (i.e., by providing an example image or by drawing a sketch onthe screen). Query by example permits even complicated queries: The user may specify severalobjects with complex shapes and inter-relationships and may ask for all images containing similarobjects with similar relationships. The retrieved images need not be exactly similar to the query.Instead, database search must be approximate so that, all images up to a pre-speci�ed degree ofsimilarity (tolerance) are retrieved.In this work we deal with the following problem: Given a set of images, retrieve those whichare similar to an example query (e.g., \�nd all X-rays that are similar to Smith's X-ray"). Wepropose a general methodology which (a) uses an e�cient representation of image content basedon \Attributed Relational Graphs" (ARGs), (b) indexes the stored ARGs with state-of-the-artdatabase methods (R-trees), and (c) supports approximate retrieval of images by content (i.e.,based on both object properties and relationships between objects).2

We design the image distance/similarity functions and we show that the search method allowsno \false dismissals" (i.e., all images qualifying similarity criteria are retrieved). Speci�cally, allimages within a given tolerance are retrieved. The performance of the proposed methodology hasbeen evaluated based on an IDB of synthetic, but realistic, medical images. The results of thisevaluation demonstrate very signi�cant performance improvements over traditional sequential scantechniques utilizing graph matching. Finally, we show that the method scales-up well.The rest of this paper is organized as follows: The de�nition of the problem, the assumptionsmade and a short presentation of the underlying theory are presented in Section 2. A review ofrelated work done in the areas of Computer Vision and DataBases is presented in Section 3. Theproposed methodology is presented in Section 4. In Section 5, experimental results are given anddiscussed. In section 6, we make several interesting observations on the proposed approach and wediscuss optimization techniques along with issues for future research. Finally, the conclusions aregiven in Section 7.2 Problem De�nition and BackgroundGiven a collection of N images, we must derive appropriate representations of their content andorganize the images together with their representations in the IDB so that we can search e�cientlyfor images similar to an example image.All images are segmented into close contours corresponding to dominant image objects orregions. We assume that all images contain a number of \expected" or \labeled" objects. Theseare objects common in all images of a given application domain. For example, in medical images,the expected objects may correspond to the usual anatomical structures (e.g., \heart", \lungs") andthe outline contour of the body. Similarly, the labeled objects may be the cell outline in microscopeimages; the sun and the horizon in outdoor images etc. All expected objects are identi�ed prior tostorage and a class or name is assigned to each one. The labeled objects need not be similar in allimages.Not all objects need to be identi�ed: Images may also contain \unexpected" or \unlabeled"objects. These, may be either objects not present in all images or objects whose characterizationis di�cult or ambiguous. For example, in medical images, the unexpected objects may correspondto abnormal (pathological) structures (e.g., \hematoma", \tumor" etc.).In this work, we deal with images containing a �xed number (k) of labeled objects and avariable number (u � 0) of unlabeled objects. We also assume that the labeled objects have di�erentlabels. Objects not common in all images are treated as unlabeled (unexpected). Similarly, queriesby example may specify a �xed number of labeled objects and a variable number of unlabeled3

objects. Notice that this is a general setting. One special case is the case where all objects areunlabeled (k = 0). Another special case is when all objects are labeled (u = 0) in all images aswas the case in [2]. There, the problem was to search a database of face images; from each image,a �xed number of labeled objects are identi�ed (eyes, nose, etc.) and their attributes and relativepositions are computed.2.1 BackgroundImage descriptions are given in terms of object properties and in terms of relationships betweenobjects. Such image descriptions are represented by relational structures such as Attributed Re-lational Graphs (ARGs) [4, 11]. In an ARG, the objects are represented by graph nodes andthe relationships between objects are represented by arcs between such nodes. Both nodes andarcs are labeled by attributes corresponding to properties (features) of objects and relationshipsrespectively.
left eye

object 3

right eye

nose
object 1

face
object 0

object 2

r
12

a = 120

23
r
a = 0

r
13

a = 60

V
0

1
V

V
3

02
r
a = 50

02
r
a = 130

V
2

01
a = 270
rc = face c = nose

l = 15
l = 15

l = 20l = 100

c = right eye
c = left eyeFigure 1: Example image showing a sketch of a face (left) and its corresponding ARG (right).Figure 1 shows an example image (a line drawing showing a face) containing four objects(numbered 0 through 3) and its corresponding ARG. Each object has an attribute (c) denotingits name or class and an attribute representing the length (l) of its boundary. The relationshipbetween any two objects has also one attribute, the angle (a) with the horizontal direction of theline connecting the centers of mass of these objects.The speci�c features which are used in ARGs are derived from the raw image data and,depending on the application, can be geometric (i.e., independent of pixel values), statistical or4

textural, or features speci�ed in some transform domain (e.g., Fourier coe�cients of object shapes).In the case of medical CT and MRI images used in this work, the set of features is given inSection 4.1. However, the proposed methodology is independent of any speci�c kind of features.
face

object 0

object 1
left eye

0
V

1
V

01
a = 110
r

c = face
l = 80

l = 10
c = left eyeFigure 2: Example query image (left) and its corresponding ARG (right).The problem of retrieving images which are similar to a given example image is transformedinto a problem of searching a database of stored ARGs: Given a query, its ARG has to be computedand compared with all stored ARGs. Matching between ARGs is a well known problem and hasbeen studied extensively in the Computer Vision literature [23, 54, 4, 18]. Speci�cally, matching aquery and a stored graph is treated as a subgraph isomorphism problem.Figure 2 shows an example query and its corresponding ARG. In this example, query object0 can only be associated with object 0 of the image of Figure 1 since, this is the only object havingthe same label with it. Similarly, query object 1 is matched with object 2. Their correspondingrelationships are matched too. Equivalently, query node v00 is associated to node v0, v01 to v2 and arcr001 is associated to arc r02 of the graph of the original image. However, if the label of a query objectis unknown, all possible associations between this query object and the objects in the original imagehave to be examined. The problem becomes harder if the query or the original image contain manyunlabeled objects or objects with the same label. Then matching becomes a hard combinatorialproblem.In comparisons between ARGs, we need a measure of the \goodness" of matching. A measureof goodness is de�ned in [4]: Let Q be a query image consisting of q objects and S be a storedimage consisting of s objects. Let F () be a mapping from objects in Q to objects in S (e.g., such5

a mapping associates objects with the same labels). The cost of this mapping is de�ned as:DistF (Q; S) = Xi2[1;q]COST (i; F (i)) + Xi;j2[1;q]COST (i; j; F (i); F (j)) (1)The �rst term in Equation 1 is the cost of matching associated nodes, while the second term is thecost of matching the relationships between such nodes.
0

1

01

V

V

0

2

1
V

01

02 r

23

12

r
1302

r

r

r

r
V

3

COST=10

COST= 20

COST = 20

V

r

VFigure 3: Matching between the query and the original example image.In our setting, only a subset of the objects in the stored image S need to be matched. Thereis no cost if the data image contains extra objects; however, we assume that the cost is in�nite ifthe data image is missing one of the objects of the query.COST is the cost of matching features of objects or features of relationships between associ-ated objects. The distance between images Q and S is de�ned as the minimum distance computedover all possible mappings F (): Dist(Q; S) = minF fDistF (Q; S)g : (2)The typical way to compute DistF (Q; S) is using an Lp metric. This is done as follows: Let(q1; q2 : : : qK) be a vector of feature values derived from Q by taking the features of all its objectsand of their relationships in some pre-speci�ed order (e.g., object 1 and its relationships with theremaining objects are taken �rst followed by the features of object 2 etc.). Let (s1; s2; : : :sK) bethe vector derived from S by taking the features of the objects associated to objects in Q in thesame order. Then, Equation 1 can be written as follows:DistF (Q; S) = Distp;F (Q; S) = " KXi=1 jqi � sijp#1=p (3)6

p is the order of the metric. For p = 1 and p = 2 we obtain the Manhattan (city-block) and theEuclidean distance respectively. For example, the Manhattan distance between the query image ofFigure 2 and the example image of Figure 2 is Dist(Q; S) = j100�80j+ j15�10j+ j130�110j= 45.We have omitted the subscript F because there is only one mapping.Similarity searching in an IDB of stored ARGs requires that all images within distance t mustbe retrieved. Speci�cally, all images qualifying the following condition have to be retrieved:Dist(Q; S) � t: (4)Without loss of generality, we use the Euclidean distance (p = 2). However, the proposed methodcan handle any Lp metric.3 Survey - Related WorkImportant considerations in the design and implementation of IDB systems supporting queriesby image content are: Image feature extraction, image content representation and organizationof stored information, search and retrieval strategies, and user interface design. Addressing suchissues has become object of intensive research activities in many areas of Computer Science overthe past few years [57, 11, 35, 13]. Advances mainly in the areas of Databases and Computer Visionresearch resulted in methods which can be used for image archiving, retrieval and IDB design work.However, as observed in [32], there is a need for increased communication between the vision andthe database communities to deal with the above issues. Combining results from both areas is animportant next step.3.1 Image Retrieval by ContentImage content can be described indirectly through attributes (e.g., subject, speaker, etc.) or text(e.g., captions) [16]. However, queries by image content require that, prior to storage, images areprocessed, appropriate descriptions of their content are extracted, stored in the database and usedin retrievals.Retrievals by image content is not an exact process (two images are rarely identical). Instead,all images with up to a pre-speci�ed degree of similarity have to be retrieved. The design ofappropriate image similarity/distance functions is a key issue here. In addition, retrievals can begreatly accelerated if the stored images are indexed. So far, most of the methods which have beendeveloped, perform either exact match retrievals (e.g., 2-D strings [15]) or exhaustive (sequential)database search (e.g., [9, 40, 19]). 7

Approaches to combine approximate database search and indexing do exist [31, 20]. However,such techniques do not support image retrievals by content (i.e., based on properties of objectscontained in images and on relationships between objects). The proposed methodology achieves thisgoal by using ARG representations of image content in combination with state-of-the-art databasetechniques for indexing in many dimensions, called \spatial access methods".3.1.1 Exact Match Searching in Image DatabasesOnce an image description has been derived, it can be easily represented in database storagestructures (e.g., database relations) [12, 43]. Such image representations can be used to answerqueries specifying simple constraints on object property values or relationships. Queries by exampleare di�cult to be processed.2-D strings [15] provide an approach to e�cient image content representation and reducedcomplexity (i.e., polynomial) matching in image databases. 2-D strings assume that image objectsare identi�ed prior to storage so that a unique name or class is assigned to each one. The relativepositions between all objects are then represented by two one dimensional strings. The idea is toproject object positions (e.g., their centers of mass) on the x and y axis respectively, and take theobjects in the same order as they appear in the two projections. The problem of image retrievalis then transformed into one of string matching: All 2-D strings containing the 2-D string of thequery as a substring, are considered similar to it and are retrieved. To speedup retrievals, methodsfor indexing 2-D strings in a database has been proposed in [10, 46, 45]. Extensions of 2-D stringsto treat various types of image properties has been proposed in [46]. Representations such as 2-D Gstrings [14] and 2-D C strings [36], have also been proposed and deal with situations of overlappingobjects with complex shapes. However, such representations are not as simple and compact as theoriginal 2-D strings.The e�ectiveness of 2-D string based representations in retrieving images by content hasbeen investigated in [46]. It has been shown that, with respect to what a user expects to see inthe responses, 2-D strings may yield \false alarms" (not qualifying images) and \false dismissals"(qualifying but not retrieved images). This is mostly due to the fact that, 2-D strings changedrastically with small variations in object characteristics. Techniques for inexact match retrievalsbased on 2-D string has also been proposed in [38, 37]. However, such retrievals are less timee�cient (i.e., matching is not polynomial). 8

3.1.2 Approximate Searching in Image DatabasesA system designed to support the segmentation, the description, as well as the interactive retrievalof facial images from an IDB is presented in [2]. A-priori knowledge regarding the kind andthe positioning of expected image objects (e.g., face outline, nose, eyes etc.) is employed andused to guide the segmentation of face images into disjoint regions corresponding to the aboveobjects. Retrieval is performed in stages allowing the user to adjust the query criteria at each stageand progressively achieve the desired results. This strategy may be especially helpful when thespeci�cation of pictorial content in queries is ambiguous and it may be proven to be an e�ectivemethod for making a di�cult �nal selection. However, database search is exhaustive, and each timea new query is issued, the whole database has to be searched. This may be very time consumingfor large databases. The authors do not provide experimental results on the time performance oftheir method. This work may bene�t greatly from the proposed approach on image indexing andretrieval by content in two ways: (a) Database search can be greatly accelerated with our proposedindexing method and (b) queries may include also unlabeled or unexpected objects (e.g., a scaralong the face).In [47], an information retrieval approach is proposed. The user can specify \imprecise"queries (i.e., queries that do not evaluate into \yes" or \no") using a command oriented querylanguage which allows the user to express preference and importance values for the objects involvedin the query. Retrievals are based on a multilevel signature technique. The method assumes thatthe number and the kind of objects which appear in all images are known in advance. However,database search is exhaustive and the method cannot handle e�ciently queries by example. Theauthors do not provide experimental results.An attempt to combine indexing and approximate database search is described in [31]. Themain idea is to extract f features from each image, thus mapping images into points in a f -dimensional space. Once this is achieved, any spatial access method can be used to handle rangeand nearest-neighbor queries e�ciently. This approach has been applied for the recognition ofwritten digits: The bitmap of each digit is represented by a few (3 to 5) rectilinear rectangleswhose coordinates collectively are used as the features. The method did not address the issueof false dismissals, nor the problem of retrieving images by specifying properties of objects andrelationships between objects.In the QBIC project of IBM [20], an indexing method for queries on color, shape and textureis proposed. The main contribution in this paper was a technique to handle the cases where thedistance function is not an Euclidean distance including \cross-talk" of attributes. Focusing mainlyon colors, this work does not show how to handle multiple objects per image, as well as their inter-9

relationships. Thus, the paper does not show how to handle queries of the form \�nd the imageswhere a red ball is close to a yellow rectangle". Other methods supporting retrieval of images basedon the colors in a scene are proposed in [8, 55, 34].Additional work on image content retrieval includes: The technique of [56] deals with theproblem of image content retrieval based on spatial relationships between objects when images arerotated. The encoding of relationships, called \arrangement", is independent of image rotation,and describes the sequence in which the neighbors of each object are arranged around it. Thework in [29] deals with the problem of indexing for medical images. Given a picture, the four\most important" objects are taken and their centers of mass are used to represent their spatialrelationships. However, this approach seems to allow for false dismissals: If an X-ray has 5 objects,one of them will be ignored. Thus, queries on this �fth object will never retrieve that X-ray.3.2 Spatial Access MethodsA tool to achieve faster-than-sequential searching is to use the so-called \spatial access methods".These are �le structures to manage a large collection of f -dimensional points (or rectangles or othergeometric objects) stored on the disk so that, \range queries" can be e�ciently answered. A rangequery speci�es a region (e.g., hyper-rectangle or hyper-sphere) in the address space, requesting allthe data objects that intersect it. If the data objects are points (as eventually happens in ourapplication), the range query requires all the points that are inside the region of interest. Anexample of a range query on point data is \retrieve all the cities that are 200 km away fromBrussels".Several spatial access methods have been proposed. A recent survey can be found in [51].These methods can be grouped into the following classes: (a) Methods that transform rectanglesinto points in a higher dimensionality space [28]; (b) methods that use linear quad-trees [25, 1] or,equivalently, the \z-ordering" [41] or other \space �lling curves" [22, 30]; and �nally, (c) methodsbased on trees (k-d-trees [6, 7], k-d-B-trees [49], hB-trees [39], cell-trees [26] etc.). One of the mostcharacteristic approaches in the last class is the R-tree [27].The R-tree can be envisioned as an extension of the B-tree for multidimensional objects. Ageometric object is represented by its Minimum Bounding Rectangle (MBR). Non-leaf nodes containentries of the form (ptr; R) where ptr is a pointer to a child node in the R-tree; R is the MBR thatcovers all rectangles in the child node. Leaf nodes contain entries of the form (object� id; R) whereobject� id is a pointer to the object description, and R is the MBR of the object. The main ideain the R-tree is that father nodes are allowed to overlap. This way, the R-tree can guarantee goodspace utilization and remain balanced. Figure 4 illustrates data rectangles (in black) organized in10

4

5

6

1

9

7
8

2

10

12

11

3
Root

1 2 3

4 5 6 7 8 9 10 1211(a) (b)Figure 4: Data (dark rectangles) organized in an R-tree (a), and the resulting tree on disk (b).an R-tree (left); the �le structure for the same R-tree is also shown (right); the nodes correspondto disk pages. Extensions, variations and improvements to the original R-tree structure include thepacked R-trees [50], the R+-tree [53] and the R�-tree [5].4 Proposed SolutionIn this work, we use the R-tree as the underlying method for indexing images by content. Thereason for our choice is that the R-tree is more robust in high-dimensionality address spaces. Aswe shall see, in IDB applications the number of attributes/dimensions can be high (20-30), whichcan still be handled by an R-tree [44]. On the contrary, the main competitors of the R-tree (seeSection 3.2) require time or space that is exponential on the dimensionality.Henceforth, we assume that images are segmented into closed contours corresponding tolabeled and unlabeled objects of interest. Figure 5 shows an example of an original MRI image andof its segmented form. We can easily identify three labeled objects namely, spine (object 2), liver(object 1) and body outline (object 0). Henceforth, the number of labeled objects in all images willbe k = 3.Techniques for the automatic segmentation and recognition of tomographic images do exist[3, 33, 17, 48]. In general, image automatic segmentation and labeling of the components areoutside the scope of this paper. For our purposes, we assume that each image has been segmentedautomatically or manually and that its components have been labeled (typically, by a domain11

4

1

3

2

UNLABELED

LIVER

SPINE

BODY
OUTLINE

0

UNLABELEDFigure 5: Example of an original grey-level image (left) and its segmented form (right) showing 3labeled objects (body outline with index 0, liver with index 1 and spine with index 2) and 2 unlabeledwith indices 3 and 4.expert). The contribution of our work is on the fast searching after the images and the querieshave been segmented and labeled.4.1 Image Content DescriptionThe descriptions used in this work are given in terms of properties of objects contained in imagesand in terms of relationships between such objects. Individual objects are described by propertiescorresponding to characteristics of their position, size and shape. Speci�cally, the following set ofproperties is used to describe each object:� Size (s), computed as the size of the area it occupies.� Roundness (r), computed as the ratio of the smallest to the largest second moment.� Orientation (o), de�ned to be the angle between the horizontal direction and the axis ofelongation. This is the axis of least second moment.The following properties are used to describe the spatial relationships between two objects:� Distance (d), computed as the minimum distance between all pairs of line segments, takingone from each object. 12

� Relative Position (p), de�ned as the angle with the horizontal direction of the line connectingthe centers of mass of the two objects.The above set of features is by no means unique. Additional features that could be usedinclude the average grey-level and texture values, moments or Fourier coe�cients etc. as objectdescriptors; Relative size, amount of overlapping or adjacency etc. can be also used to characterizethe relationships between objects. However, it has been shown in [43, 46] that the proposed setof features give acceptable results in retrievals of medical images by content. Notice that, theproposed method can handle any set of features that the domain expert may deem appropriate.The contribution of this work is not on choosing a good set of features, but on accelerating thesequential search on a given, expertly chosen, set of features.Figure 6 shows the attributed graph representing the content of the example image of Figure 5.Nodes correspond to objects and arcs correspond to relationships between objects. Both nodes andarcs are labeled by attribute values corresponding to object properties and relationships respectively.The properties corresponding to the arc connecting object 1 (liver) with object 2 (spine) are notshown. Angles are in degrees.The derived representation are both scale and translation invariant (i.e., images translatedor scaled with respect to each other result in the same representation). To achieve scale invariance,we normalize lengths and areas by dividing them respectively by the diameter and the area ofthe largest object of the given image. The features we have chosen are also independent of imagetranslation since, only relationships between objects are used to characterize object positions. Toachieve rotation invariance, all images are registered to a standard orientation4.2 Image Indexing - File StructureOur goal is to achieve fast searching in a database of stored ARGs. The approach we follow isto map ARGs into points in a multidimensional space. Then, a multidimensional access methodcan be used. However, such a method requires that the number of dimensions (equivalently, thenumber of keys or axes) are known in advance and are �xed. However, the number of objects isnot the same in all images, and therefore, the number of dimensions cannot be �xed. We solvethis problem by decomposing each image into images containing an equal number of objects, called\sub-images":De�nition 1 A (k; u) sub-image of a given image contains the k labeled objects and u unlabeledobjects.An attribute vector is then computed to each derived sub-image consisting of property valuescorresponding to the objects it contains and the relationships between these objects taking them in13

r = 0.38

s = 14905

LIVER

r = 0.8
o = 2.6

BODY

r = 0.68
o = 20.5
s = 769

SPINE

object 0

object 1 object 2

object 3

d = 14

s = 46989.5

o = 23.2

s = 171.5
o = 92.9
r = 0.56

s = 455.5
o = 122.6
r = 0.621

p = 136.5
d = 33.2

d = 56
p = 194.5

d = 31.2
p = 136.7

d = 11.9
p = 232.4

d = 6.9
p = 137.2

d = 47.6
p = 149.5

d = 87.9
p = 117.4

d = 48.8
p = 84.6

object 4

p = 267.9

UNLABELEDUNLABELEDFigure 6: Attributed graph representing the content of the example image of Figure 5.a pre-speci�ed order (i.e., object 1 and its relationships with the remaining objects are taken �rstfollowed by the attribute values of object 2 etc.). For example, using the features described before,a (k; 1) sub-image (k = 3) is represented by a 24-dimensional vector: 4 objects with 3 attributeseach, plus �42� = 6 relationships, with 2 attributes each. The vectors of all (k,1) sub-images arethen stored in an R-tree data structure. For each vector, an image identi�er corresponding to theimage from which it has been derived is also stored.Figure 7 demonstrates the proposed �le structure of the data on the disk. Speci�cally, theIDB consists of the following parts:� The \image �le store". This is a separate disk store holding the original image �les. Forfaster display we have also kept the segmented polygonal forms of all images (not shown inFigure 7).� The \graph �le". This is a �le holding the ARGs. Each record in this �le consists of anidenti�er (e.g., the image �le name) corresponding to the image from which the ARG hasbeen derived, and the features of each object together with its relationships with the remainingobjects. 14

graph file
im-id1

im-id2

im-id3

im-id4

...

...

...

...

...

im-idN

.

.

.

.

im-id2

im-id1

INDEX STRUCTURE

im-idN

im-id2

im-id1

im-id2

im-idN

IMAGE FILES

(k,1) R-tree

Figure 7: Proposed �le structure.� The R-tree data structure holding the vectors computed to all the (k; 1) sub-images. We callthis R-tree \(k; 1) R-tree".The graph �le together with the (k; 1)R-tree form the \index structure". In the IDB literature[11], the image �le store and the index structure are called \physical" and \logical" databaserespectively. There is a plethora of alternative designs (e.g., R-trees holding vectors for (k; 2) sub-images). We considered several of them and experimented with them all. The (k,1) R-tree resultsin the best search times for a small space overhead and is the one that we mainly focus on next.In Section 6.1 we present alternative designs along with implementation details and experiments.4.3 Query ProcessingGiven a (k; u) query image and a tolerance t, we want to retrieve all images that contain a (k; u)sub-image which matches the query within tolerance t. As we show soon, the (k,1) R-tree indexdoes not have false dismissals (i.e., all qualifying images are retrieved). However, it may return false15

alarms (i.e., not qualifying images) in which case, it may return a superset of the required images.A post-processing step is required to clean-up the false alarms. The generic search algorithm is asfollows:R-tree search: Issue (one or more) range queries on the (k,1) R-tree, to obtain a list of promisingimages (image identi�ers).Clean-up: For each of the above obtained images, retrieve its corresponding ARG from the graph�le and compute the actual distance between this ARG and the ARG of the query. If thedistance is less than the threshold t, the image is included in the response set.As mentioned earlier, we decided to use the Euclidean distance (p=2 in Equation 3). However,the proposed indexing method can handle any Lp metric. For the Euclidean distance, the queryregion is a (hyper-)sphere; for the city-block distance (L1) it is a diamond; for the L1 it is a squareetc. All of the above can be handled by the R-tree (i.e., it replaces the query region by its minimumbounding rectangle and it fetches the points that fall within tolerance t).Next, we distinguish between queries specifying one unlabeled object and queries specifyingtwo or more unlabeled objects.4.3.1 One Unlabeled ObjectA (k,1) query speci�es all labeled objects and one unlabeled. Such a query is mapped to a pointin a multidimensional space of 24 dimensions (f = 24) and treated as a range query: using theEuclidean distance, we want the points in f -dimensional space that fall within a (hyper-)sphere ofradius t, where t is the tolerance. The R-tree is searched and all vectors within radius t (i.e., thosesatisfying Equation 4) are retrieved. Feature vectors falling outside the query sphere are excludedfrom the answer set. Range queries on an R-tree yield neither false alarms nor false dismissals.Therefore, in this speci�c case of (k,1) queries there is no need for \clean-up" and the graph �leneed not be examined.4.3.2 Two or More Unlabeled ObjectsHere consider the case of a (k,2) query specifying 2 unlabeled objects. We break the query into two(k,1) query sub-images called \sub-queries". Then, we can apply either of the following strategies:With-Intersection: Apply both (k,1) sub-queries to the (k,1) R-tree with tolerance t. Intersecttheir resulting response sets to obtain the set of common image identi�ers. The ARGs cor-responding to these image identi�ers are retrieved from the graph �le and matched with theoriginal query to discard the false alarms. 16

No-Intersection: Search the (k,1) R-tree for the �rst sub-query with tolerance t. The secondsub-query is ignored. Retrieve the resulting ARGs from the graph �le and match them withthe original query to discard all possible false alarms.Both strategies introduce false alarms. The �rst strategy, attempts to minimize the falsealarms but, involves excessive R-tree search and set intersections. The second strategy, avoidsR-tree search as much as possible but, employees an expensive clean-up stage.We can prove that the above strategies will have no false dismissals:Lemma 1 Replacing a (k,2) query of tolerance t with two (k,1) queries of tolerance t each andintersecting their results will give no false dismissals.Proof: Let Q be a (k,2) query. Its corresponding vector is (q1; q2; : : : qf). Let S be a qualifyingimage. The vector computed to the subset of its contained objects which are similar to queryobjects is (s1; s2; : : :sf). This vector corresponds to the best mapping F () according to Equation 2.Each of the above two vectors consists of terms corresponding (a) to the labeled objects, which aredenoted by l subscripts (b) to unlabeled objects, which are denoted by x subscripts for the �rstunlabeled object and z subscripts for the second unlabeled object, (c) to the relationships betweenlabeled objects, which are denoted by ll subscripts, (d) to the relationships between labeled andunlabeled objects, which are denoted by lx and lz subscripts and (e) to the relationships betweenunlabeled objects, which are denoted by xz subscripts. Then we have:(ql1 � sl1)2 + (ql2 � sl2)2 + : : :(qx1 � sx1)2 + (qx2 � sx2)2 + : : :(qz1 � sz1)2 + (qz2 � sz2)2 + : : :(qll1 � sll1)2 + (qll2 � sll2)2 + : : :(qlx1 � slx1)2 + (qlx2 � slx2)2 + : : :(qlz1 � slz1)2 + (qlz2 � slz2)2 + : : :(qxz1 � sxz1)2 + (qxz1 � sxz2)2 + : : : � t2: (5)We want to prove that the above image will be retrieved by the proposed strategy. That is,we want to prove that the two (k,1) sub-queries will each retrieve image S. Speci�cally, we wantto prove the following inequalities:(ql1 � sl1)2 + (ql2 � sl2)2 + : : :(qx1 � sx1)2 + (qx2 � sx2)2 + : : :(qll1 � sll1)2 + (qll2 � sll2)2 + : : :(qlx1 � slx1)2 + (qlx2 � slx2)2 + : : : � t2; (6)and (ql1 � sl1)2 + (ql2 � sl2)2 + : : :(qz1 � sz1)2 + (qz2 � sz2)2 + : : :(qll1 � sll1)2 + (qll2 � sll2)2 + : : :(qlz1 � slz1)2 + (qlz2 � slz2)2 + : : : � t2: (7)17

The above inequalities will de�nitely hold, since they can be produced from Inequality 5 byomitting some positive terms. This completes the proof of the lemma, for both strategies. 2The search algorithms for queries with more than 2 unlabeled objects are straightforwardextensions of the above ideas.4.3.3 Other QueriesThe de�nition of similarity given in Section 2.1 serves as the basis for more complicated situations.Our proposed scheme can handle cases where the query speci�es only a few of the labeled objects(e.g., we don't care for some of them). In these cases, the summation of Equation 3 excludes thefeatures of the unspeci�ed objects (partial match queries). The R-tree index can still handle thesequeries: The range of values along the unspeci�ed axes stretches from �1 to +1.The proposed method can also handle the case where the user considers some of the propertiesmore important than others. We can give higher weights to these properties. If weights are usedwith Equation 3, the query speci�es an ellipse in the feature space, instead of a sphere. The weightscould even be adjusted on-the-
y by the user. Since a weighted Euclidean distance presents noadditional indexing problems, we do not consider weights for the rest of this paper.5 ExperimentsTo test the e�ciency of our methodology, we implemented the system in C, under UNIX. As atestbed, we used a database consisting of 13500 synthetic segmented images (synthetic workload).Originally we used 20 MRI images. We segmented these images by manual tracing the contoursof labeled objects. To produce a synthetic image from a given original, we allowed the objectsin the original to rotate, scale and translate by a certain amount computed by a random numbergenerator (e.g., each object is allowed to rotate between 0 and 20 degrees). Moreover, the contourpoints of each object were allowed to extend along the line connecting the center of mass of theobject with each point. A number of unlabeled objects (at most 5 per image) having random sizes,shapes and positions was then added to the above derived images. Objects were not allowed tointersect with each other. Among the 13500 images we produced, there are 4500 images with 8objects, 3600 with 7 objects, 2700 with 6, 1800 with 5 and 900 with 4 objects. All images contain3 labeled objects.We carried out several groups of experiments based on a (k,1) R-tree (i.e., holding vectorsconsisting of all k labeled objects and one unlabeled). Queries specifying all labeled objects andone unlabeled ((k,1) queries) are the basic queries and are used to process more complex queriesspecifying more unlabeled objects. The experiments were designed to:18

� Study the performance of the processing of (k,1) and (k,2) queries.� Illustrate the superiority of the proposed method over sequential scan searching.� Study the scale-up of the proposed method.To obtain average performance measures, the average performance of 45 characteristic queriesis computed. The times reported correspond to the elapsed (i.e., \wall-clock") time by adding the\system" time and the \user" time (cpu time) as reported by the times system call of UNIX. Thesystem is implemented on a SUN/470 with 32 Mbytes of main memory and a MICROPOLIS diskwith average seek time less than 12msecs. When we run the experiments, no user were logged on.In all the experiments, we used 4K bytes as the page size for the R-tree. The space required forthe implementation of the (k,1) R-tree is 22.5 Mbytes while, the graph �le requires 5.1M bytes forstorage.5.1 Queries With One Unlabeled ObjectThe goal of this set of experiments is to illustrate the performance gains of our method with respectto sequential scanning of the database for the basic (k,1) queries (i.e., queries specifying all 3 labeledobjects and 1 unlabeled).Figure 8 plots the response time (averaged over 45 queries) for (k,1) queries. Our methodachieves large savings, even for high values of the tolerance (for t=530 the retrieved set is almost1000 images; presumably a user would like to retrieve 20-50 images, in which case, t must be lessthan 200). Even for such large queries, the response time of the proposed method is below 2seconds. Notice that sequential scanning is always above 2 seconds.Sequential scanning is performed by matching the vector computed to a given query with thevectors produced from each stored ARG having the same size with it. For (k,1) queries, these areat most 5 (i.e., all images contain between 1 and 5 unlabeled objects). For sequential scanning weperformed the following optimization: For every image, the partial sum of the distance functionof Equation 3 is continuously compared with the threshold, to achieve early rejections. Thus, asthe tolerance increases, more and more images delay to be rejected, thus increasing the responsetime. We call this method \optimized sequential" as opposed to the \naive sequential" method(i.e., the sum of Equation 3 is computed �rst and then compared with the tolerance). For the naivesequential scan the response time was almost constant at 13.5 secs. Henceforth, the optimizedsequential scan is used in the experiments.The shape of the curves can be justi�ed as follows: For the optimized sequential scanning,the search time increases with the tolerance because of the optimization we described earlier. For19

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500

re
sp

on
se

 ti
m

e
(s

ec
)

tolerance (t)

(k,1) R-tree search
naive sequential search

optimized sequential search

Figure 8: Average retrieval response time as a function of the tolerance (t) for (k,1) queries cor-responding to (a) search on a (k,1) R-tree, (b) naive sequential scan and (c) optimized sequentialscan of the database.the proposed method, the shape of the curve resembles an exponential curve. This is expected,because the number of qualifying images increases exponentially with the tolerance.Figure 9 plots the response time as a function of the number of qualifying images (response-set size). The labels indicate the corresponding value of the tolerance. This �gure contains almostthe same information with Figure 8, showing in addition the response-set size.5.2 Queries With Two Unlabeled ObjectsThe next set of experiments examines (k,2) queries (i.e., queries specifying all 3 labeled objects and2 unlabeled). Figure 10 plots the average retrieval response time of (k,2) queries as as a functionof the tolerance t.A (k,2) query breaks into two (k,1) sub-queries. As explained in Section 4.3, we have two20

0

1

2

3

4

5

6

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e
(s

ec
)

response set size (images)

370 390 410 430 450 470
490 510

350 370 390 410 430 450 470

(k,1) R-tree search
sequential search

Figure 9: Average retrieval response time as a function of the average retrieval response set sizefor (k,1) queries. The labels denote the corresponding values of the tolerance (t).alternative methods to search the (k,1) R-tree:With-Intersection: Both (k,1) sub-queries are processed by the R-tree.No-Intersection: Only the �rst (k,1) sub-query is processed by the R-tree.The experimental results show that above two methods are roughly comparable with respectto response time. The recommended method is the second one, since it is faster than the �rst one.The shape of the curves is also expected, resembling curves that are exponential as a function of thetolerance. The sequential scanning was the slowest, even for large values of the tolerance, rangingfrom 6 seconds to 15 seconds. Its response time is not constant, because of the optimization wedescribed in the case of (k,1) queries. The rest of the experiments in this section concentrate on(k,1) queries. 21

0

2

4

6

8

10

12

14

16

50 100 150 200 250 300 350 400 450 500

re
sp

on
se

 ti
m

e
(s

ec
)

tolerance (t)

(k,1) R-tree, no intersection
(k,1) R-tree, with intersection

optimized sequential search

Figure 10: Average retrieval response time as a function of the tolerance (t) for (k,2) queriescorresponding to (a) search on a (k,1) R-tree utilizing one (k,1) sub-query, (b) search on a (k,1)R-tree utilizing both (k,1) sub-queries and (c) optimized sequential scan of the database.5.3 Scale-UpIn this set of experiments we examined the performance of the proposed method as a functionof the database size N (number of stored images). Figure 11 plots the average retrieval responsetime for the sequential scan and for the proposed method. The tolerance is set to t = 310. Noticethat the performance gap between the two methods widens as the database grows. Therefore, theproposed method becomes increasingly attractive for larger databases.5.4 Examples of RetrievalsFigure 12 demonstrates a characteristic example of a (k,1) query (left) and of a retrieved image(right). The cost of matching their corresponding 24-dimensional vectors is 219.4. Observe that,both labeled and unlabeled objects in the query and the retrieved image respectively, have approx-22

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2500 4500 6500 8500 10500 12500

re
sp

on
se

 ti
m

e
(s

ec
)

number of stored images (N)

R-tree search
sequential search

Figure 11: Average retrieval response time corresponding to a �xed value of the tolerance (t = 310)as a function of the number of images (N) stored in the database.imately similar characteristics and similar spatial relationships. The retrieved image contains alsoone additional unlabeled object (object 4) not speci�ed by the query.6 Discussion - ObservationsThere are several interesting observations, as well as a plethora of optimization techniques thatcan be used. In this section we present a discussion on alternative index designs, as well as someobservations, which may lead to some interesting research in the future.6.1 Alternative Index OrganizationsWe can use the (k,1) R-tree to answer queries with any number of unlabeled objects. However, itis natural to wonder what would be the performance of a (k,2) R-tree. This R-tree would contain23

1

2

LIVER

0

SPINE
UNLABELED

3

BODY OUTLINE

4

1

32

0

SPINE UNLABELED

LIVER

UNLABELED

BODY OUTLINEFigure 12: Example of a query image specifying all 3 labeled and 1 unlabeled object (left) andexample of a retrieved image (right).all the feature vectors of the (k,2) sub-images derived from all the images stored in the database.Then, an image with 5 unknown objects would yield �52� vectors, all of which would be stored inthe k-2 R-tree. Generalizing, we can maintain a (k,3) R-tree, a (k,4) R-tree and so on. Notice,however, two important points:� A (k,2) R-tree can not answer (k,1) queries. In general, a (k; u) R-tree can not answer (k; u0)queries, if u0 � u. Therefore, the (k; u) R-tree has to be maintained in addition to the (k,1)R-tree, the (k,2) R-tree, : : : the (k; u� 1) R-tree.� The space overhead of a (k; u) R-tree increases fast with u: For example, an image with 6unlabeled objects, will yield �61� = 6 entries for the (k,1) R-tree, �62� = 15 and �63� = 20 entriesfor the (k,2) and the (k,3) R-tree respectively.We implemented the (k,2) R-tree and measured its search time for (k,2) queries. Figure 13shows the response time of the (k,2) R-tree (f = 35), as a function of the tolerance t for the samesetting as in Section 5 with the rest of the experiments. Its response time is very good, mainlybecause it does not require clean-up. However, the required space overhead is large: 52.2 Mbytes asopposed to 22.5 Mbytes of the (k,1) R-tree. Given the large space requirements and its di�culty inanswering (k,1) queries, the (k,2) R-tree is not recommended. For the same reasons, other R-treeswith more unlabeled objects are also not recommended.24

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

50 100 150 200 250 300 350 400 450 500

re
sp

on
se

 ti
m

e
(s

ec
)

tolerance (t)

(k,1) R-tree
(k,2) R-tree

Figure 13: Average retrieval response time as a function of the tolerance (t) for (k,2) queriescorresponding to search on (a) a (k,1) R-tree and (b) a (k,2) R-tree.6.2 Using Fewer Features for IndexingOur proposed method has no false dismissals that is, it will retrieve each and every hit thatsequential scanning would have retrieved, only faster. For the (k,1) queries, this is obvious, becauseour R-tree index contains all the attributes that the distance function needs. However, we can showthat we can omit some of the attributes, and still guarantee no false dismissals, introducing somefalse alarms (and subsequently, a more expensive clean-up step), to achieve a smaller, hopefullyfaster, R-tree.To guarantee no false dismissals, the distance between two sub-images in a lower dimension-ality space should under-estimate their distance when all attributes are used. This is always true,since the omitted attributes correspond to terms omitted from Equation 3; these terms are allpositive and, therefore, the distance between the two images is under-estimated. For both casesthe tolerance is assumed to be t. Then, every qualifying sub-image will be retrieved with both25

methods.It is bene�cial to keep \useful" attributes (e.g., the most discriminatory attributes). Con-versely, dropping \useless" attributes will introduce a few additional false alarms. A useless featurewould be one having the same value in every image. For example, we can ignore the attributes ofthe labeled objects \spine" and \body outline" from the ARG of Figure 6, since these objects looksimilar in most images. This will introduce false alarms, but no false dismissals. Notice that, anR-tree with some attributes omitted is still able to answer (k,2) queries (as well as (k,3), (k,4) etc.queries) without false dismissals.Compared to the original method, the trade-o� is as follows: If we keep fewer attributes inthe (k,1) R-tree, more vectors will �t per R-tree node resulting in higher fan-out and, therefore,into a smaller, shallower and faster R-tree. The penalty we have to pay is the increased number offalse alarms that the post-processing step will have to deal with.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450 500

re
sp

on
se

 ti
m

e
(s

ec
)

tolerance (t)

(k,2) R-tree, 35 features
(k,2) R-tree, 21 features

Figure 14: Average retrieval response time as a function of the tolerance (t) for (k,2) queriescorresponding to search on a (k,2) R-tree utilizing (a) all 35 attributes and (b) 21 attributes.26

In order to fully exploit this method, it is necessary to develop a way to distinguish the usefulattributes from the useless ones. An in-depth analysis of such methods is outside the scope of thispaper. Here we only outline two possible solutions:� A domain expert may be used to pinpoint the useful attributes.� In case of a static (or slowly changing) database, we can use the Karhunen-Loeve transform,which, given a static set of f attributes, creates f new attributes sorted in \usefulness" order.Keeping the �rst few attributes we can probably retain most of the information needed.We ran some experiments to determine whether the lower dimensionality R-trees show anypromise. By omitting attributes of labeled objects, we reduced the dimensionality of the (k,1)R-tree from 24 to 12, and of the (k,2) R-tree from 35 to 21. The original (k,1) R-tree with f = 24was faster than the R-tree with f = 12 for (k,1) queries. However, as observed from Figure 14, thisis not always the case for (k,2) queries. Therefore, we believe that, if the most useful attributes arecarefully selected, the resulting R-tree will probably be faster in cases of very high dimensionalityspaces.6.3 E�ective/Fractal DimensionHere we focus on (k,1) queries. As observed in section 5.1, the response time increases exponentiallywith the tolerance t. Figure 15 shows the number of qualifying (k,1) sub-images as a function of thetolerance, in doubly logarithmic scales. It also plots the line of a linear regression. It is interestingto note that the line gives a good approximation. The slope of the line is �3.The slope of such diagrams is related to the \correlation fractal dimension" [52], which issimilar to the \e�ective dimensionality" [24]. This implies that our data points in feature spacefollow a skewed distribution: If they were uniformly distributed in a f -dimensional feature space,then the slope should be f (i.e., the number of neighbors within distance t should increase with thetf). The fact that it increases like t3 means that the point-set behaves like a 3-dimensional objectembedded in a f -dimensional space. This observation can be used in the following two ways:(a) Dimensionality reduction techniques, such as the Karhunen-Loeve (K-L) transform, can beused to reduce the dimensionality of the R-tree from f = 24 to 3 (i.e., by keeping the �rstthree attributes of the (K-L) transform). In cases where a large number of image attributesare used for indexing, dimensionality reduction might make the R-tree faster.(b) It may help us predict the selectivity (i.e., response-set size) and subsequently, the responsetime of our method. In [21] we show how to estimate the performance of R-trees using theconcept of fractal dimension, which, in our case, is � 3.27

0

2

4

6

8

10

4.5 5 5.5 6

lo
g(

ve
ct

or
s)

log(tolerance)

measurements
Y = 2.97131*X -11.7848

Figure 15: Logarithm of the number of qualifying vectors as a function of the logarithm of thetolerance t for (k,1) queries.Skewed distributions of points in feature space should be common to almost any set of images,since image content representations usually include correlated attributes. Thus, we expect that the\e�ective/fractal" dimensionality will be small in other IDB applications too. As an example ofcorrelated attributes, consider the case of an object that contains other objects. The former isalways bigger than the objects it contains. In turn, its contained objects are usually close to eachother. This is the case with the medical CT and MRI scans we used. In all these cases, we believethat the estimation of the fractal/e�ective dimension will give useful information to the systembuilders, both to design the index structure, as well as for query optimization.28

7 ConclusionsIn this paper, we proposed a method to handle approximate searching by image content in largeimage databases. Our approach allows for continuous, quantitative estimates of similarity. Oldermethods, such as 2-D strings [15], give binary (i.e., \yes/no") answers while, others are timeconsuming and cannot be used to support retrievals in large databases [37]. In addition, imagecontent representation methods based on strings have been proven to be ine�ective in capturingimage content and may yield inaccurate retrievals. Attributed relational graphs (ARGs) provide ane�ective means for image content representation. However, retrievals based on attributed relationalgraphs are ine�cient. This is mostly due to the complexity of search [54]. In addition, search isexhaustive. In this work, we proposed a method for the indexing of stored attributed relationalgraphs. We make the assumption that certain labeled objects can be identi�ed in all images. Thissituation is common to images found in many application domains including medicine, remotesensing, microscopy, robotics etc. In this work, we focused our attention on medical images (i.e.,tomographic scans of the body).Our method allows similarity search to be performed on both labeled and unlabeled (i.e., notidenti�ed) objects. Indexing is performed by decomposing each input image into sets of objects,called \sub-images", containing all labeled objects and a �xed number of unlabeled. All sub-images are mapped to points in a multidimensional feature space implemented as an R-tree. Imagedatabase search is then transformed into spatial search. We provide experimental results on asynthetic, but realistic database. The experimental results are a good support to the claims ofe�ciency. We show that the proposed method outperforms sequential scanning signi�cantly (i.e.,up to an order of magnitude), never missing a hit (no false dismissals are allowed).Future work includes (a) the examination of dimensionality-reduction methods, (b) the designof a powerful query language supporting the processing of various types of image queries, (c) theextension of this method to work on a parallel machine supporting parallel disc access and (d) thedevelopment of an object oriented data model and system designed according to the principles ofthe system of [46], capable of handling various types of medical images and taking advantage ofthe time e�ciency of the methodology proposed in this paper.References[1] Walid G. Aref and Hanan Samet. Optimization strategies for spatial query processing. Proc. of VLDB(Very Large Data Bases), pages 81{90, September 1991.29

[2] Je�rey R. Bach, Santanu Paul, and Ramesh Jain. A Visual Information Management System for theInteractive Retrieval of Faces. IEEE Transactions on Knowledge and Data Engineering, 5(4):619{627,August 1993.[3] S. Back, H. Neumann, and H. S. Stiehl. On Segmenting Computed Tomograms. In Computer AssistedRadiology, CAR89, pages 691{696, Berlin, June 1989.[4] Dana H. Ballard and Christopher M. Brown. Computer Vision. Prentice Hall, 1982.[5] Nobert Beckmann, Hans-Peter Kriegel, Ralf Scneider, and Bernhard Seeger. The R�-tree: An E�cientand Robust Access Method for Points and Rectangles. In Proceedings of the 1990 ACM SIGMOD,pages 322{331, Atlantic City, NJ, May 1990.[6] J.L. Bentley. Multidimensional binary search trees used for associative searching. CACM, 18(9):509{517,September 1975.[7] Jon Louis Bentley and Jerome H. Friedman. Data Structures for Range Searching. ACM ComputingSurveys, 11(4):397{409, December 1979.[8] Elizabeth Binaghi, Isabella Gagliardi, and Raimondo Schettini. Indexing and Fuzzy Logic-Based Re-trieval of Color Images. In Visual Database Systems, II, IFIP Transactions A-7, pages 79{92. ElsevierScience Publishers, 1992.[9] Robert C. Bolles and Ronald A. Cain. Recognizing and Locating Partially Visible Objects: The Local-Feature-Focus Method. The International Journal of Robotics Research, 1(3):57{82, 1982.[10] Chin-Chen Chang and Suh-Yin Lee. Retrieval of Similar Pictures on Pictorial Databases. PatternRecognition, 24(7):675{680, 1991.[11] Shi-Kuo Chang. Principles of Pictorial Information Systems Design. Prentice Hall International Edi-tions, 1989.[12] Shi-Kuo Chang and King-Sun Fu. A Relational Database System for Images. In Shi-Kuo Chang andKing-Sun Fu, editors, Pictorial Information Systems, pages 288{321. Springer-Verlag, 1980.[13] Shi-Kuo Chang and Arding Hsu. Image Information Systems: Where Do We Go From Where? IEEETransactions on Knowledge and Data Engineering, 4(5):431{442, 1992.[14] Shi-Kuo Chang, Erland Jungert, and Y. Li. Representation and Retrieval of Symbolic Pictures UsingGeneralized 2-D Strings. In SPIE Proceedings, Visual Communications and Image Processing, pages1360{1372, Philadelphia, November 1989.[15] Shi-Kuo Chang, Qing-Yun Shi, and Cheng-Wen Yan. Iconic Indexing by 2-D Strings. IEEE Transactionson Pattern Analysis and Machine Intelligence, 9(3):413{428, May 1987.[16] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria. Multimedia Document Presen-tation, Information Extraction and Document Formation in MINOS: A Model and a System. ACMTransactions on O�ce Information Systems, 4(4):345{383, October 1986.30

[17] Silvana Dellepiane, Giovanni Venturi, and Gianni Vernazza. Model Generation and Model Matching ofReal Images by a Fuzzy Approach. Pattern Recognition, 25(2):115{137, 1992.[18] M. A. Eshera and King-Sun Fu. A Graph Distance Measure for Image Analysis. IEEE Transactions onSystems Man and Cybernetics, SMC-14(3):353{363, 1984.[19] M. A. Eshera and King-Sun Fu. An Image Understanding System Using Attributed Symbolic Represen-tation and Inexact Graph-Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,8(5):604{618, 1986.[20] Christos Faloutsos, Ron Barber, Myron Flickner, Wayne Niblack, Dragutin Petkovic, and William Eq-uitz. E�cient and e�ective querying by image content. J. of Intelligent Information Systems, 3(3/4):231{262, July 1994.[21] Christos Faloutsos and Ibrahim Kamel. Beyond uniformity and independence: Analysis of r-trees usingthe concept of fractal dimension. Proc. ACM SIGACT-SIGMOD-SIGART PODS, pages 4{13, May1994. Also available as CS-TR-3198, UMIACS-TR-93-130.[22] Christos Faloutsos and Shari Roseman. Fractals for Secondary Key Retrieval. Technical ReportUMIACS-TR-89-47, CS-TR-2242, University of Maryland, Colledge Park, Maryland, May 1989.[23] Martin A. Fischler and Robert A. Elschlager. The Representation and Matching of Pictorial Structures.IEEE Transactions on Computers, c-22(1):67{92, 1973.[24] Keinosuke Fukunaga. Introduction to Statistical Pattern Recognition. Academic Press, 1990. 2ndEdition.[25] I. Gargantini. An e�ective way to represent quadtrees. Comm. of ACM (CACM), 25(12):905{910,December 1982.[26] O. Gunther. The cell tree: an index for geometric data. Memorandum No. UCB/ERL M86/89, Univ.of California, Berkeley, December 1986.[27] Antonin Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. In Proceedings of ACMSIGMOD, pages 47{57, June 1984.[28] K. Hinrichs and J. Nievergelt. The Grid-File: A Data Structure to Support Proximity Queries onSpatial Objects. Technical Report 54, Institut fur Informatik, ETH, Zurich, July 1983.[29] Hou, Hsu, Liu, and Chiu. A content-based indexing technique using relative geometry features. SPIE92, 1662:59{68, 1992.[30] H. V. Jagadish. Linear Clustering of Objects with Multiple Attributes. In Proceedings of ACM SIGMOD,pages 332{342, Atlantic City, May 1990.[31] H. V. Jagadish. A retrieval technique for similar shapes. In International Conference on Managementof Data, SIGMOD 91, pages 208{217, Denver, CO, May 1991. ACM.[32] R. Jain and W. Niblack. Nsf workshop on visual information management, February 1992.31

[33] Ioannis Kapouleas. Segmentation and Feature Extraction for Magnetic Resonance Brain Image Analysis.In Proceedings of 10th International Conference on Pattern Recognition, pages 583{590, Atlantic City,New Jersey, June 1990.[34] Toshikazu Kato, Takio Kurita, Nobuyuki Otsu, and Kyoji Hirata. A Sketch Retrieval Method for FullColor Image Database - Query by Visual Example. In Proceedings of 11th International Conference OnPattern Recognition, pages 530{533, The Hague, The Netherlands, August 1992.[35] Petros Kofakis and Stelios C. Orphanoudakis. Image Indexing by Content. In M. Osteaux et. al., editor,A Second Generation PACS Concept, chapter 7, pages 250{293. Springer-Verlag, 1992.[36] Suh-Yin Lee and Fang-Jung Hsu. 2D C-String: A New Spatial Knowledge Representation for ImageDatabase Systems. Pattern Recognition, 23(10):1077{1087, 1990.[37] Suh-Yin Lee and Fang-Jung Hsu. Spatial Reasoning and Similarity Retrieval of Images using 2D C-Sstring Knowledge Representation. Pattern Recognition, 25(3):305{318, 1992.[38] Suh-Yin Lee, Man-Kwan Shan, and Wei-Pang Yang. Similarity Retrieval of Iconic Image Databases.Pattern Recognition, 22(6):675{682, 1989.[39] David B. Lomet and Betty Salzberg. The hb-tree: a multiattribute indexing method with good guar-anteed performance. ACM TODS, 15(4):625{658, December 1990.[40] Ramakant Nevatia and Keith E. Price. Locating Structures in Aerial Images. IEEE Transactions onPattern Analysis and Machine Intelligence, 4(5):476{484, September 1982.[41] Jack A. Orestein. Spatial Query Procesing in an Object Oriented Database System. In ACM ProceedingsSIGMOD 86, pages 326{336, Washington, May 1986.[42] S. C. Orphanoudakis, C. Chronaki, and S. Kostomanolakis. I2C: A System for the Indexing, Storageand Retrieval of Medical Images by Content. Technical Report 113, Institute of Computer Science,Foundation for Research and Technology - Hellas, Heraklion, Greece, January 1994. To appear in theJournal of Medical Informatics.[43] Stelios C. Orphanoudakis, Euripides G. Petrakis, and Petros Kofakis. A Medical Image DataBaseSystem for Tomographic Images. In Proceedings of Computer Assisted Radiology, CAR89, pages 618{622, Berlin, June 1989.[44] Michael Otterman. Approximate matching with high dimensionality r-trees. M.Sc. scholarly paper,Dept. of Computer Science, Univ. of Maryland, College Park, MD, 1992. supervised by C. Faloutsos.[45] Euripides G.M. Petrakis and Stelios C. Orphanoudakis. A Generalized Approach for Image Indexing andRetrieval Based Upon 2-D Strings. In Shi-Kuo Chang, Erland Jungert, and Genove�a Tortora, editors,Visual Reasoning. Plenum Publishing Co., 1993. To be publised. Also available as FORTH-ICS/TR-103.[46] Euripides G.M. Petrakis and Stelios C. Orphanoudakis. Methodology for the Representation, Indexingand Retrieval of Images by Content. Image and Vision Computing, 11(8):504{521, October 1993.32

[47] F. Rabitti and P. Savino. An Information Retrieval Approach for Image Databases. In Proceedingsof the 18th International Conference on VLDB, pages 574{584, Vancuver, British Columbia, Canada,August 1992.[48] A.V. Raman, S. Sarkar, and K. L. Boyer. Hypothesizing Sstructures in Edge-Focused Cerebral Mag-netic Images Using Graph-Theoretic Cycle Enumeratation. CVGIP: Image Understanding, 57(1):81{98,January 1993.[49] John T. Robinson. The k-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes.In Proceedings of ACM SIGMOD, pages 10{18, 1981.[50] N. Roussopoulos and D. Leifker. Direct spatial search on pictorial databases using packed r-trees. Proc.ACM SIGMOD, May 1985.[51] Hanan Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.[52] Manfred Schroeder. Fractals, Chaos, Power Laws: Minutes From an In�nite Paradise. W.H. Freemanand Company, New York, 1991.[53] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+-tree: A Dynamic Index for Multidi-mensional Objects. In Proceedings of 13th International Confernece on VLDB, pages 507{518, England,September 1987.[54] Linda G. Shapiro and Robert M. Haralick. Structural Discriptions and Inexact Matching. IEEETransactions on Pattern Analysis and Machine Intelligence, 3(5):504{519, 1981.[55] Michael J. Swain and Dana H. Ballard. Color Indexing. International Journal of Computer Vision,7(1):11{32, 1991.[56] Hemant D. Tagare, Conrade C. Jafee, and James S. Duncan. Arrangement: A Spatial Relation forDescribing and Comparing Part Embeddings. In Proceedings of 11th International Conference OnPattern Recognition, pages 91{94, The Hague, The Netherlands, August 1992.[57] Hideyuki Tamura and Naokazu Yokoya. Image Database Systems: A Survey. Pattern Recognition,17(1):29{49, 1984.
33

