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analysis and archiving. A similar need of processing, analysis and archiving of images has beenidenti�ed in applications such as cartography (images are analog or digitized maps) and meteorology(images are meteorological maps). In medicine, in particular, a large number of images of variousimaging modalities (e.g., Computer Tomography, Magnetic Resonance etc.) are produced dailyand used to support clinical decision making. The capabilities of the above application �elds canbe extended to provide valuable teaching, training and enhanced image interpretation support, bydeveloping techniques supporting the automated archiving and the retrieval of images by content.For example, in medicine, before making a diagnosis, a clinician could retrieve similar cases from themedical archive. Content-based retrievals would not only yield cases of patients with similar imageexaminations and similar diagnosis but also, cases of patients with similar image examinations anddi�erent diagnoses [42].To support queries by image content in an Image DataBase (IDB), all images must be an-alyzed prior to storage so that, descriptions of their content can be extracted and stored in thedatabase together with the original images. These descriptions are then used to search the IDBand to determine which images satisfy the query selection criteria. The e�ectiveness of an IDBsystem ultimately depends on the types and correctness of image content representations used, thetypes of image queries allowed and the e�ciency of search techniques implemented.Fast responses are essential to an IDB. An IDB system must employee searching methods thatare faster than sequential scanning methods, and which must \scale-up" well (i.e., their performanceremains consistently better than the performance of sequential scanning methods as the databasegrows).Query formulation must be 
exible and convenient (as opposed to queries expressed by acommand-oriented query language like SQL). Ideally, queries must be speci�ed through a graphicaluser interface, such as by example (i.e., by providing an example image or by drawing a sketch onthe screen). Query by example permits even complicated queries: The user may specify severalobjects with complex shapes and inter-relationships and may ask for all images containing similarobjects with similar relationships. The retrieved images need not be exactly similar to the query.Instead, database search must be approximate so that, all images up to a pre-speci�ed degree ofsimilarity (tolerance) are retrieved.In this work we deal with the following problem: Given a set of images, retrieve those whichare similar to an example query (e.g., \�nd all X-rays that are similar to Smith's X-ray"). Wepropose a general methodology which (a) uses an e�cient representation of image content basedon \Attributed Relational Graphs" (ARGs), (b) indexes the stored ARGs with state-of-the-artdatabase methods (R-trees), and (c) supports approximate retrieval of images by content (i.e.,based on both object properties and relationships between objects).2



We design the image distance/similarity functions and we show that the search method allowsno \false dismissals" (i.e., all images qualifying similarity criteria are retrieved). Speci�cally, allimages within a given tolerance are retrieved. The performance of the proposed methodology hasbeen evaluated based on an IDB of synthetic, but realistic, medical images. The results of thisevaluation demonstrate very signi�cant performance improvements over traditional sequential scantechniques utilizing graph matching. Finally, we show that the method scales-up well.The rest of this paper is organized as follows: The de�nition of the problem, the assumptionsmade and a short presentation of the underlying theory are presented in Section 2. A review ofrelated work done in the areas of Computer Vision and DataBases is presented in Section 3. Theproposed methodology is presented in Section 4. In Section 5, experimental results are given anddiscussed. In section 6, we make several interesting observations on the proposed approach and wediscuss optimization techniques along with issues for future research. Finally, the conclusions aregiven in Section 7.2 Problem De�nition and BackgroundGiven a collection of N images, we must derive appropriate representations of their content andorganize the images together with their representations in the IDB so that we can search e�cientlyfor images similar to an example image.All images are segmented into close contours corresponding to dominant image objects orregions. We assume that all images contain a number of \expected" or \labeled" objects. Theseare objects common in all images of a given application domain. For example, in medical images,the expected objects may correspond to the usual anatomical structures (e.g., \heart", \lungs") andthe outline contour of the body. Similarly, the labeled objects may be the cell outline in microscopeimages; the sun and the horizon in outdoor images etc. All expected objects are identi�ed prior tostorage and a class or name is assigned to each one. The labeled objects need not be similar in allimages.Not all objects need to be identi�ed: Images may also contain \unexpected" or \unlabeled"objects. These, may be either objects not present in all images or objects whose characterizationis di�cult or ambiguous. For example, in medical images, the unexpected objects may correspondto abnormal (pathological) structures (e.g., \hematoma", \tumor" etc.).In this work, we deal with images containing a �xed number (k) of labeled objects and avariable number (u � 0) of unlabeled objects. We also assume that the labeled objects have di�erentlabels. Objects not common in all images are treated as unlabeled (unexpected). Similarly, queriesby example may specify a �xed number of labeled objects and a variable number of unlabeled3



objects. Notice that this is a general setting. One special case is the case where all objects areunlabeled (k = 0). Another special case is when all objects are labeled (u = 0) in all images aswas the case in [2]. There, the problem was to search a database of face images; from each image,a �xed number of labeled objects are identi�ed (eyes, nose, etc.) and their attributes and relativepositions are computed.2.1 BackgroundImage descriptions are given in terms of object properties and in terms of relationships betweenobjects. Such image descriptions are represented by relational structures such as Attributed Re-lational Graphs (ARGs) [4, 11]. In an ARG, the objects are represented by graph nodes andthe relationships between objects are represented by arcs between such nodes. Both nodes andarcs are labeled by attributes corresponding to properties (features) of objects and relationshipsrespectively.
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textural, or features speci�ed in some transform domain (e.g., Fourier coe�cients of object shapes).In the case of medical CT and MRI images used in this work, the set of features is given inSection 4.1. However, the proposed methodology is independent of any speci�c kind of features.
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a mapping associates objects with the same labels). The cost of this mapping is de�ned as:DistF (Q; S) = Xi2[1;q]COST (i; F (i)) + Xi;j2[1;q]COST (i; j; F (i); F (j)) (1)The �rst term in Equation 1 is the cost of matching associated nodes, while the second term is thecost of matching the relationships between such nodes.
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p is the order of the metric. For p = 1 and p = 2 we obtain the Manhattan (city-block) and theEuclidean distance respectively. For example, the Manhattan distance between the query image ofFigure 2 and the example image of Figure 2 is Dist(Q; S) = j100�80j+ j15�10j+ j130�110j= 45.We have omitted the subscript F because there is only one mapping.Similarity searching in an IDB of stored ARGs requires that all images within distance t mustbe retrieved. Speci�cally, all images qualifying the following condition have to be retrieved:Dist(Q; S) � t: (4)Without loss of generality, we use the Euclidean distance (p = 2). However, the proposed methodcan handle any Lp metric.3 Survey - Related WorkImportant considerations in the design and implementation of IDB systems supporting queriesby image content are: Image feature extraction, image content representation and organizationof stored information, search and retrieval strategies, and user interface design. Addressing suchissues has become object of intensive research activities in many areas of Computer Science overthe past few years [57, 11, 35, 13]. Advances mainly in the areas of Databases and Computer Visionresearch resulted in methods which can be used for image archiving, retrieval and IDB design work.However, as observed in [32], there is a need for increased communication between the vision andthe database communities to deal with the above issues. Combining results from both areas is animportant next step.3.1 Image Retrieval by ContentImage content can be described indirectly through attributes (e.g., subject, speaker, etc.) or text(e.g., captions) [16]. However, queries by image content require that, prior to storage, images areprocessed, appropriate descriptions of their content are extracted, stored in the database and usedin retrievals.Retrievals by image content is not an exact process (two images are rarely identical). Instead,all images with up to a pre-speci�ed degree of similarity have to be retrieved. The design ofappropriate image similarity/distance functions is a key issue here. In addition, retrievals can begreatly accelerated if the stored images are indexed. So far, most of the methods which have beendeveloped, perform either exact match retrievals (e.g., 2-D strings [15]) or exhaustive (sequential)database search (e.g., [9, 40, 19]). 7



Approaches to combine approximate database search and indexing do exist [31, 20]. However,such techniques do not support image retrievals by content (i.e., based on properties of objectscontained in images and on relationships between objects). The proposed methodology achieves thisgoal by using ARG representations of image content in combination with state-of-the-art databasetechniques for indexing in many dimensions, called \spatial access methods".3.1.1 Exact Match Searching in Image DatabasesOnce an image description has been derived, it can be easily represented in database storagestructures (e.g., database relations) [12, 43]. Such image representations can be used to answerqueries specifying simple constraints on object property values or relationships. Queries by exampleare di�cult to be processed.2-D strings [15] provide an approach to e�cient image content representation and reducedcomplexity (i.e., polynomial) matching in image databases. 2-D strings assume that image objectsare identi�ed prior to storage so that a unique name or class is assigned to each one. The relativepositions between all objects are then represented by two one dimensional strings. The idea is toproject object positions (e.g., their centers of mass) on the x and y axis respectively, and take theobjects in the same order as they appear in the two projections. The problem of image retrievalis then transformed into one of string matching: All 2-D strings containing the 2-D string of thequery as a substring, are considered similar to it and are retrieved. To speedup retrievals, methodsfor indexing 2-D strings in a database has been proposed in [10, 46, 45]. Extensions of 2-D stringsto treat various types of image properties has been proposed in [46]. Representations such as 2-D Gstrings [14] and 2-D C strings [36], have also been proposed and deal with situations of overlappingobjects with complex shapes. However, such representations are not as simple and compact as theoriginal 2-D strings.The e�ectiveness of 2-D string based representations in retrieving images by content hasbeen investigated in [46]. It has been shown that, with respect to what a user expects to see inthe responses, 2-D strings may yield \false alarms" (not qualifying images) and \false dismissals"(qualifying but not retrieved images). This is mostly due to the fact that, 2-D strings changedrastically with small variations in object characteristics. Techniques for inexact match retrievalsbased on 2-D string has also been proposed in [38, 37]. However, such retrievals are less timee�cient (i.e., matching is not polynomial). 8



3.1.2 Approximate Searching in Image DatabasesA system designed to support the segmentation, the description, as well as the interactive retrievalof facial images from an IDB is presented in [2]. A-priori knowledge regarding the kind andthe positioning of expected image objects (e.g., face outline, nose, eyes etc.) is employed andused to guide the segmentation of face images into disjoint regions corresponding to the aboveobjects. Retrieval is performed in stages allowing the user to adjust the query criteria at each stageand progressively achieve the desired results. This strategy may be especially helpful when thespeci�cation of pictorial content in queries is ambiguous and it may be proven to be an e�ectivemethod for making a di�cult �nal selection. However, database search is exhaustive, and each timea new query is issued, the whole database has to be searched. This may be very time consumingfor large databases. The authors do not provide experimental results on the time performance oftheir method. This work may bene�t greatly from the proposed approach on image indexing andretrieval by content in two ways: (a) Database search can be greatly accelerated with our proposedindexing method and (b) queries may include also unlabeled or unexpected objects (e.g., a scaralong the face).In [47], an information retrieval approach is proposed. The user can specify \imprecise"queries (i.e., queries that do not evaluate into \yes" or \no") using a command oriented querylanguage which allows the user to express preference and importance values for the objects involvedin the query. Retrievals are based on a multilevel signature technique. The method assumes thatthe number and the kind of objects which appear in all images are known in advance. However,database search is exhaustive and the method cannot handle e�ciently queries by example. Theauthors do not provide experimental results.An attempt to combine indexing and approximate database search is described in [31]. Themain idea is to extract f features from each image, thus mapping images into points in a f -dimensional space. Once this is achieved, any spatial access method can be used to handle rangeand nearest-neighbor queries e�ciently. This approach has been applied for the recognition ofwritten digits: The bitmap of each digit is represented by a few (3 to 5) rectilinear rectangleswhose coordinates collectively are used as the features. The method did not address the issueof false dismissals, nor the problem of retrieving images by specifying properties of objects andrelationships between objects.In the QBIC project of IBM [20], an indexing method for queries on color, shape and textureis proposed. The main contribution in this paper was a technique to handle the cases where thedistance function is not an Euclidean distance including \cross-talk" of attributes. Focusing mainlyon colors, this work does not show how to handle multiple objects per image, as well as their inter-9



relationships. Thus, the paper does not show how to handle queries of the form \�nd the imageswhere a red ball is close to a yellow rectangle". Other methods supporting retrieval of images basedon the colors in a scene are proposed in [8, 55, 34].Additional work on image content retrieval includes: The technique of [56] deals with theproblem of image content retrieval based on spatial relationships between objects when images arerotated. The encoding of relationships, called \arrangement", is independent of image rotation,and describes the sequence in which the neighbors of each object are arranged around it. Thework in [29] deals with the problem of indexing for medical images. Given a picture, the four\most important" objects are taken and their centers of mass are used to represent their spatialrelationships. However, this approach seems to allow for false dismissals: If an X-ray has 5 objects,one of them will be ignored. Thus, queries on this �fth object will never retrieve that X-ray.3.2 Spatial Access MethodsA tool to achieve faster-than-sequential searching is to use the so-called \spatial access methods".These are �le structures to manage a large collection of f -dimensional points (or rectangles or othergeometric objects) stored on the disk so that, \range queries" can be e�ciently answered. A rangequery speci�es a region (e.g., hyper-rectangle or hyper-sphere) in the address space, requesting allthe data objects that intersect it. If the data objects are points (as eventually happens in ourapplication), the range query requires all the points that are inside the region of interest. Anexample of a range query on point data is \retrieve all the cities that are 200 km away fromBrussels".Several spatial access methods have been proposed. A recent survey can be found in [51].These methods can be grouped into the following classes: (a) Methods that transform rectanglesinto points in a higher dimensionality space [28]; (b) methods that use linear quad-trees [25, 1] or,equivalently, the \z-ordering" [41] or other \space �lling curves" [22, 30]; and �nally, (c) methodsbased on trees (k-d-trees [6, 7], k-d-B-trees [49], hB-trees [39], cell-trees [26] etc.). One of the mostcharacteristic approaches in the last class is the R-tree [27].The R-tree can be envisioned as an extension of the B-tree for multidimensional objects. Ageometric object is represented by its Minimum Bounding Rectangle (MBR). Non-leaf nodes containentries of the form (ptr; R) where ptr is a pointer to a child node in the R-tree; R is the MBR thatcovers all rectangles in the child node. Leaf nodes contain entries of the form (object� id; R) whereobject� id is a pointer to the object description, and R is the MBR of the object. The main ideain the R-tree is that father nodes are allowed to overlap. This way, the R-tree can guarantee goodspace utilization and remain balanced. Figure 4 illustrates data rectangles (in black) organized in10



4

5

6

1

9

7
8

2

10

12

11

3
Root

1 2 3

4 5 6 7 8 9 10 1211(a) (b)Figure 4: Data (dark rectangles) organized in an R-tree (a), and the resulting tree on disk (b).an R-tree (left); the �le structure for the same R-tree is also shown (right); the nodes correspondto disk pages. Extensions, variations and improvements to the original R-tree structure include thepacked R-trees [50], the R+-tree [53] and the R�-tree [5].4 Proposed SolutionIn this work, we use the R-tree as the underlying method for indexing images by content. Thereason for our choice is that the R-tree is more robust in high-dimensionality address spaces. Aswe shall see, in IDB applications the number of attributes/dimensions can be high (20-30), whichcan still be handled by an R-tree [44]. On the contrary, the main competitors of the R-tree (seeSection 3.2) require time or space that is exponential on the dimensionality.Henceforth, we assume that images are segmented into closed contours corresponding tolabeled and unlabeled objects of interest. Figure 5 shows an example of an original MRI image andof its segmented form. We can easily identify three labeled objects namely, spine (object 2), liver(object 1) and body outline (object 0). Henceforth, the number of labeled objects in all images willbe k = 3.Techniques for the automatic segmentation and recognition of tomographic images do exist[3, 33, 17, 48]. In general, image automatic segmentation and labeling of the components areoutside the scope of this paper. For our purposes, we assume that each image has been segmentedautomatically or manually and that its components have been labeled (typically, by a domain11



4

1

3

2

UNLABELED

LIVER

SPINE

BODY
OUTLINE

0

UNLABELEDFigure 5: Example of an original grey-level image (left) and its segmented form (right) showing 3labeled objects (body outline with index 0, liver with index 1 and spine with index 2) and 2 unlabeledwith indices 3 and 4.expert). The contribution of our work is on the fast searching after the images and the querieshave been segmented and labeled.4.1 Image Content DescriptionThe descriptions used in this work are given in terms of properties of objects contained in imagesand in terms of relationships between such objects. Individual objects are described by propertiescorresponding to characteristics of their position, size and shape. Speci�cally, the following set ofproperties is used to describe each object:� Size (s), computed as the size of the area it occupies.� Roundness (r), computed as the ratio of the smallest to the largest second moment.� Orientation (o), de�ned to be the angle between the horizontal direction and the axis ofelongation. This is the axis of least second moment.The following properties are used to describe the spatial relationships between two objects:� Distance (d), computed as the minimum distance between all pairs of line segments, takingone from each object. 12



� Relative Position (p), de�ned as the angle with the horizontal direction of the line connectingthe centers of mass of the two objects.The above set of features is by no means unique. Additional features that could be usedinclude the average grey-level and texture values, moments or Fourier coe�cients etc. as objectdescriptors; Relative size, amount of overlapping or adjacency etc. can be also used to characterizethe relationships between objects. However, it has been shown in [43, 46] that the proposed setof features give acceptable results in retrievals of medical images by content. Notice that, theproposed method can handle any set of features that the domain expert may deem appropriate.The contribution of this work is not on choosing a good set of features, but on accelerating thesequential search on a given, expertly chosen, set of features.Figure 6 shows the attributed graph representing the content of the example image of Figure 5.Nodes correspond to objects and arcs correspond to relationships between objects. Both nodes andarcs are labeled by attribute values corresponding to object properties and relationships respectively.The properties corresponding to the arc connecting object 1 (liver) with object 2 (spine) are notshown. Angles are in degrees.The derived representation are both scale and translation invariant (i.e., images translatedor scaled with respect to each other result in the same representation). To achieve scale invariance,we normalize lengths and areas by dividing them respectively by the diameter and the area ofthe largest object of the given image. The features we have chosen are also independent of imagetranslation since, only relationships between objects are used to characterize object positions. Toachieve rotation invariance, all images are registered to a standard orientation4.2 Image Indexing - File StructureOur goal is to achieve fast searching in a database of stored ARGs. The approach we follow isto map ARGs into points in a multidimensional space. Then, a multidimensional access methodcan be used. However, such a method requires that the number of dimensions (equivalently, thenumber of keys or axes) are known in advance and are �xed. However, the number of objects isnot the same in all images, and therefore, the number of dimensions cannot be �xed. We solvethis problem by decomposing each image into images containing an equal number of objects, called\sub-images":De�nition 1 A (k; u) sub-image of a given image contains the k labeled objects and u unlabeledobjects.An attribute vector is then computed to each derived sub-image consisting of property valuescorresponding to the objects it contains and the relationships between these objects taking them in13
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alarms (i.e., not qualifying images) in which case, it may return a superset of the required images.A post-processing step is required to clean-up the false alarms. The generic search algorithm is asfollows:R-tree search: Issue (one or more) range queries on the (k,1) R-tree, to obtain a list of promisingimages (image identi�ers).Clean-up: For each of the above obtained images, retrieve its corresponding ARG from the graph�le and compute the actual distance between this ARG and the ARG of the query. If thedistance is less than the threshold t, the image is included in the response set.As mentioned earlier, we decided to use the Euclidean distance (p=2 in Equation 3). However,the proposed indexing method can handle any Lp metric. For the Euclidean distance, the queryregion is a (hyper-)sphere; for the city-block distance (L1) it is a diamond; for the L1 it is a squareetc. All of the above can be handled by the R-tree (i.e., it replaces the query region by its minimumbounding rectangle and it fetches the points that fall within tolerance t).Next, we distinguish between queries specifying one unlabeled object and queries specifyingtwo or more unlabeled objects.4.3.1 One Unlabeled ObjectA (k,1) query speci�es all labeled objects and one unlabeled. Such a query is mapped to a pointin a multidimensional space of 24 dimensions (f = 24) and treated as a range query: using theEuclidean distance, we want the points in f -dimensional space that fall within a (hyper-)sphere ofradius t, where t is the tolerance. The R-tree is searched and all vectors within radius t (i.e., thosesatisfying Equation 4) are retrieved. Feature vectors falling outside the query sphere are excludedfrom the answer set. Range queries on an R-tree yield neither false alarms nor false dismissals.Therefore, in this speci�c case of (k,1) queries there is no need for \clean-up" and the graph �leneed not be examined.4.3.2 Two or More Unlabeled ObjectsHere consider the case of a (k,2) query specifying 2 unlabeled objects. We break the query into two(k,1) query sub-images called \sub-queries". Then, we can apply either of the following strategies:With-Intersection: Apply both (k,1) sub-queries to the (k,1) R-tree with tolerance t. Intersecttheir resulting response sets to obtain the set of common image identi�ers. The ARGs cor-responding to these image identi�ers are retrieved from the graph �le and matched with theoriginal query to discard the false alarms. 16



No-Intersection: Search the (k,1) R-tree for the �rst sub-query with tolerance t. The secondsub-query is ignored. Retrieve the resulting ARGs from the graph �le and match them withthe original query to discard all possible false alarms.Both strategies introduce false alarms. The �rst strategy, attempts to minimize the falsealarms but, involves excessive R-tree search and set intersections. The second strategy, avoidsR-tree search as much as possible but, employees an expensive clean-up stage.We can prove that the above strategies will have no false dismissals:Lemma 1 Replacing a (k,2) query of tolerance t with two (k,1) queries of tolerance t each andintersecting their results will give no false dismissals.Proof: Let Q be a (k,2) query. Its corresponding vector is (q1; q2; : : : qf ). Let S be a qualifyingimage. The vector computed to the subset of its contained objects which are similar to queryobjects is (s1; s2; : : :sf ). This vector corresponds to the best mapping F () according to Equation 2.Each of the above two vectors consists of terms corresponding (a) to the labeled objects, which aredenoted by l subscripts (b) to unlabeled objects, which are denoted by x subscripts for the �rstunlabeled object and z subscripts for the second unlabeled object, (c) to the relationships betweenlabeled objects, which are denoted by ll subscripts, (d) to the relationships between labeled andunlabeled objects, which are denoted by lx and lz subscripts and (e) to the relationships betweenunlabeled objects, which are denoted by xz subscripts. Then we have:(ql1 � sl1)2 + (ql2 � sl2)2 + : : :(qx1 � sx1)2 + (qx2 � sx2)2 + : : :(qz1 � sz1)2 + (qz2 � sz2)2 + : : :(qll1 � sll1)2 + (qll2 � sll2)2 + : : :(qlx1 � slx1)2 + (qlx2 � slx2)2 + : : :(qlz1 � slz1)2 + (qlz2 � slz2)2 + : : :(qxz1 � sxz1)2 + (qxz1 � sxz2)2 + : : : � t2: (5)We want to prove that the above image will be retrieved by the proposed strategy. That is,we want to prove that the two (k,1) sub-queries will each retrieve image S. Speci�cally, we wantto prove the following inequalities:(ql1 � sl1)2 + (ql2 � sl2)2 + : : :(qx1 � sx1)2 + (qx2 � sx2)2 + : : :(qll1 � sll1)2 + (qll2 � sll2)2 + : : :(qlx1 � slx1)2 + (qlx2 � slx2)2 + : : : � t2; (6)and (ql1 � sl1)2 + (ql2 � sl2)2 + : : :(qz1 � sz1)2 + (qz2 � sz2)2 + : : :(qll1 � sll1)2 + (qll2 � sll2)2 + : : :(qlz1 � slz1)2 + (qlz2 � slz2)2 + : : : � t2: (7)17



The above inequalities will de�nitely hold, since they can be produced from Inequality 5 byomitting some positive terms. This completes the proof of the lemma, for both strategies. 2The search algorithms for queries with more than 2 unlabeled objects are straightforwardextensions of the above ideas.4.3.3 Other QueriesThe de�nition of similarity given in Section 2.1 serves as the basis for more complicated situations.Our proposed scheme can handle cases where the query speci�es only a few of the labeled objects(e.g., we don't care for some of them). In these cases, the summation of Equation 3 excludes thefeatures of the unspeci�ed objects (partial match queries). The R-tree index can still handle thesequeries: The range of values along the unspeci�ed axes stretches from �1 to +1.The proposed method can also handle the case where the user considers some of the propertiesmore important than others. We can give higher weights to these properties. If weights are usedwith Equation 3, the query speci�es an ellipse in the feature space, instead of a sphere. The weightscould even be adjusted on-the-
y by the user. Since a weighted Euclidean distance presents noadditional indexing problems, we do not consider weights for the rest of this paper.5 ExperimentsTo test the e�ciency of our methodology, we implemented the system in C, under UNIX. As atestbed, we used a database consisting of 13500 synthetic segmented images (synthetic workload).Originally we used 20 MRI images. We segmented these images by manual tracing the contoursof labeled objects. To produce a synthetic image from a given original, we allowed the objectsin the original to rotate, scale and translate by a certain amount computed by a random numbergenerator (e.g., each object is allowed to rotate between 0 and 20 degrees). Moreover, the contourpoints of each object were allowed to extend along the line connecting the center of mass of theobject with each point. A number of unlabeled objects (at most 5 per image) having random sizes,shapes and positions was then added to the above derived images. Objects were not allowed tointersect with each other. Among the 13500 images we produced, there are 4500 images with 8objects, 3600 with 7 objects, 2700 with 6, 1800 with 5 and 900 with 4 objects. All images contain3 labeled objects.We carried out several groups of experiments based on a (k,1) R-tree (i.e., holding vectorsconsisting of all k labeled objects and one unlabeled). Queries specifying all labeled objects andone unlabeled ((k,1) queries) are the basic queries and are used to process more complex queriesspecifying more unlabeled objects. The experiments were designed to:18



� Study the performance of the processing of (k,1) and (k,2) queries.� Illustrate the superiority of the proposed method over sequential scan searching.� Study the scale-up of the proposed method.To obtain average performance measures, the average performance of 45 characteristic queriesis computed. The times reported correspond to the elapsed (i.e., \wall-clock") time by adding the\system" time and the \user" time (cpu time) as reported by the times system call of UNIX. Thesystem is implemented on a SUN/470 with 32 Mbytes of main memory and a MICROPOLIS diskwith average seek time less than 12msecs. When we run the experiments, no user were logged on.In all the experiments, we used 4K bytes as the page size for the R-tree. The space required forthe implementation of the (k,1) R-tree is 22.5 Mbytes while, the graph �le requires 5.1M bytes forstorage.5.1 Queries With One Unlabeled ObjectThe goal of this set of experiments is to illustrate the performance gains of our method with respectto sequential scanning of the database for the basic (k,1) queries (i.e., queries specifying all 3 labeledobjects and 1 unlabeled).Figure 8 plots the response time (averaged over 45 queries) for (k,1) queries. Our methodachieves large savings, even for high values of the tolerance (for t=530 the retrieved set is almost1000 images; presumably a user would like to retrieve 20-50 images, in which case, t must be lessthan 200). Even for such large queries, the response time of the proposed method is below 2seconds. Notice that sequential scanning is always above 2 seconds.Sequential scanning is performed by matching the vector computed to a given query with thevectors produced from each stored ARG having the same size with it. For (k,1) queries, these areat most 5 (i.e., all images contain between 1 and 5 unlabeled objects). For sequential scanning weperformed the following optimization: For every image, the partial sum of the distance functionof Equation 3 is continuously compared with the threshold, to achieve early rejections. Thus, asthe tolerance increases, more and more images delay to be rejected, thus increasing the responsetime. We call this method \optimized sequential" as opposed to the \naive sequential" method(i.e., the sum of Equation 3 is computed �rst and then compared with the tolerance). For the naivesequential scan the response time was almost constant at 13.5 secs. Henceforth, the optimizedsequential scan is used in the experiments.The shape of the curves can be justi�ed as follows: For the optimized sequential scanning,the search time increases with the tolerance because of the optimization we described earlier. For19
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Figure 8: Average retrieval response time as a function of the tolerance (t) for (k,1) queries cor-responding to (a) search on a (k,1) R-tree, (b) naive sequential scan and (c) optimized sequentialscan of the database.the proposed method, the shape of the curve resembles an exponential curve. This is expected,because the number of qualifying images increases exponentially with the tolerance.Figure 9 plots the response time as a function of the number of qualifying images (response-set size). The labels indicate the corresponding value of the tolerance. This �gure contains almostthe same information with Figure 8, showing in addition the response-set size.5.2 Queries With Two Unlabeled ObjectsThe next set of experiments examines (k,2) queries (i.e., queries specifying all 3 labeled objects and2 unlabeled). Figure 10 plots the average retrieval response time of (k,2) queries as as a functionof the tolerance t.A (k,2) query breaks into two (k,1) sub-queries. As explained in Section 4.3, we have two20
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methods.It is bene�cial to keep \useful" attributes (e.g., the most discriminatory attributes). Con-versely, dropping \useless" attributes will introduce a few additional false alarms. A useless featurewould be one having the same value in every image. For example, we can ignore the attributes ofthe labeled objects \spine" and \body outline" from the ARG of Figure 6, since these objects looksimilar in most images. This will introduce false alarms, but no false dismissals. Notice that, anR-tree with some attributes omitted is still able to answer (k,2) queries (as well as (k,3), (k,4) etc.queries) without false dismissals.Compared to the original method, the trade-o� is as follows: If we keep fewer attributes inthe (k,1) R-tree, more vectors will �t per R-tree node resulting in higher fan-out and, therefore,into a smaller, shallower and faster R-tree. The penalty we have to pay is the increased number offalse alarms that the post-processing step will have to deal with.
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In order to fully exploit this method, it is necessary to develop a way to distinguish the usefulattributes from the useless ones. An in-depth analysis of such methods is outside the scope of thispaper. Here we only outline two possible solutions:� A domain expert may be used to pinpoint the useful attributes.� In case of a static (or slowly changing) database, we can use the Karhunen-Loeve transform,which, given a static set of f attributes, creates f new attributes sorted in \usefulness" order.Keeping the �rst few attributes we can probably retain most of the information needed.We ran some experiments to determine whether the lower dimensionality R-trees show anypromise. By omitting attributes of labeled objects, we reduced the dimensionality of the (k,1)R-tree from 24 to 12, and of the (k,2) R-tree from 35 to 21. The original (k,1) R-tree with f = 24was faster than the R-tree with f = 12 for (k,1) queries. However, as observed from Figure 14, thisis not always the case for (k,2) queries. Therefore, we believe that, if the most useful attributes arecarefully selected, the resulting R-tree will probably be faster in cases of very high dimensionalityspaces.6.3 E�ective/Fractal DimensionHere we focus on (k,1) queries. As observed in section 5.1, the response time increases exponentiallywith the tolerance t. Figure 15 shows the number of qualifying (k,1) sub-images as a function of thetolerance, in doubly logarithmic scales. It also plots the line of a linear regression. It is interestingto note that the line gives a good approximation. The slope of the line is �3.The slope of such diagrams is related to the \correlation fractal dimension" [52], which issimilar to the \e�ective dimensionality" [24]. This implies that our data points in feature spacefollow a skewed distribution: If they were uniformly distributed in a f -dimensional feature space,then the slope should be f (i.e., the number of neighbors within distance t should increase with thetf ). The fact that it increases like t3 means that the point-set behaves like a 3-dimensional objectembedded in a f -dimensional space. This observation can be used in the following two ways:(a) Dimensionality reduction techniques, such as the Karhunen-Loeve (K-L) transform, can beused to reduce the dimensionality of the R-tree from f = 24 to 3 (i.e., by keeping the �rstthree attributes of the (K-L) transform). In cases where a large number of image attributesare used for indexing, dimensionality reduction might make the R-tree faster.(b) It may help us predict the selectivity (i.e., response-set size) and subsequently, the responsetime of our method. In [21] we show how to estimate the performance of R-trees using theconcept of fractal dimension, which, in our case, is � 3.27
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7 ConclusionsIn this paper, we proposed a method to handle approximate searching by image content in largeimage databases. Our approach allows for continuous, quantitative estimates of similarity. Oldermethods, such as 2-D strings [15], give binary (i.e., \yes/no") answers while, others are timeconsuming and cannot be used to support retrievals in large databases [37]. In addition, imagecontent representation methods based on strings have been proven to be ine�ective in capturingimage content and may yield inaccurate retrievals. Attributed relational graphs (ARGs) provide ane�ective means for image content representation. However, retrievals based on attributed relationalgraphs are ine�cient. This is mostly due to the complexity of search [54]. In addition, search isexhaustive. In this work, we proposed a method for the indexing of stored attributed relationalgraphs. We make the assumption that certain labeled objects can be identi�ed in all images. Thissituation is common to images found in many application domains including medicine, remotesensing, microscopy, robotics etc. In this work, we focused our attention on medical images (i.e.,tomographic scans of the body).Our method allows similarity search to be performed on both labeled and unlabeled (i.e., notidenti�ed) objects. Indexing is performed by decomposing each input image into sets of objects,called \sub-images", containing all labeled objects and a �xed number of unlabeled. All sub-images are mapped to points in a multidimensional feature space implemented as an R-tree. Imagedatabase search is then transformed into spatial search. We provide experimental results on asynthetic, but realistic database. The experimental results are a good support to the claims ofe�ciency. We show that the proposed method outperforms sequential scanning signi�cantly (i.e.,up to an order of magnitude), never missing a hit (no false dismissals are allowed).Future work includes (a) the examination of dimensionality-reduction methods, (b) the designof a powerful query language supporting the processing of various types of image queries, (c) theextension of this method to work on a parallel machine supporting parallel disc access and (d) thedevelopment of an object oriented data model and system designed according to the principles ofthe system of [46], capable of handling various types of medical images and taking advantage ofthe time e�ciency of the methodology proposed in this paper.References[1] Walid G. Aref and Hanan Samet. Optimization strategies for spatial query processing. Proc. of VLDB(Very Large Data Bases), pages 81{90, September 1991.29
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