Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Departure Phase Aborts for Manned Mars Missions

    Thumbnail
    View/Open
    umi-umd-4242.pdf (15.15Mb)
    No. of downloads: 1057

    Date
    2007-04-20
    Author
    Dissel, Adam Frederik
    Advisor
    Lewis, Mark J
    Metadata
    Show full item record
    Abstract
    NASA goals are set on resumption of human activity on the Moon and extending manned missions to Mars. Abort options are key elements of any system designed to safeguard human lives and stated requirements stipulate the provision of an abort capability throughout the mission. The present investigation will focus on the formulation and analysis of possible abort modes during the Earth departure phase of manned Mars interplanetary transfers. Though of short duration, the departure phase encompasses a mission timeline where failures have frequently become manifest in historical manned spacecraft necessitating the inclusion of a departure phase abort capability. Investigated abort modes included aborts to atmospheric entry, and to Earth or Moon orbit. Considered interplanetary trajectory types included conjunction, opposition, and free-return trajectory classes. All abort modes were analyzed for aborts initiated at multiple points along each of these possible departure trajectories across all launch opportunities of the fifteen-year Earth-Mars inertial period. The consistently low departure velocities of the conjunction trajectories facilitated the greatest abort capability. An analysis of Mars transportation architectures was performed to determine the amount of available delta V inherent in each candidate architecture for executing departure aborts. Results indicate that a delta V of at least 4 km/s is required to achieve a continuous departure phase entry abort capability with abort flights less than three weeks duration for all transfer opportunity years. Less demanding transfer years have a corresponding increase in capability. The Earth orbit abort mode does not become widely achievable until more than 6 km/s delta V is provided; a capacity not manifest in any considered architecture. Optimization of the Moon abort mode resulted in slight departure date shifts to achieve improved lunar alignments. The Moon abort mode is only widely achievable for conjunction transfers during the optimum transfer years and delta V values greater than 4 km/s. A lesser delta V potential of 3 km/s is sufficient to enable entry aborts during the least demanding transfer opportunity years. Extensive abort capability is achievable for high delta V capable Mars architectures. Less propulsively capable architectures achieve moderate abort capability during favorable opportunity years.
    URI
    http://hdl.handle.net/1903/6761
    Collections
    • Aerospace Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility