Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Effects of Antigen Valency and CpG ODN on B Cells

    Thumbnail
    View/Open
    umi-umd-4196.pdf (4.134Mb)
    No. of downloads: 2023

    Date
    2007-03-27
    Author
    Arunkumar, Nandini
    Advisor
    Song, Wenxia
    Metadata
    Show full item record
    Abstract
    B cells express toll-like receptor 9 (TLR9), that recognizes microbial DNA containing unmethylated cytosyl guanosyl (CpG) sequences, induces innate immune responses and facilitates antigen-specific adaptive immunity. Studies indicate that in addition to stimulating innate immunity, TLR9 ligands can induce apoptosis in TLR9 expressing cancer cells. To understand the mechanism for TLR9-induced apoptosis, we compared the effects of CpG containing oligodeoxynucleotides (CpG ODN) on mouse primary, splenic B cells and a mouse lymphoma B cell line, CH27. CpG ODN stimulated the proliferation of primary B cells but inhibited cell proliferation and induced apoptosis in CH27 lymphoma B cells in a sequence-specific, TLR9-dependent fashion. While CpG ODN induced sustained activation of NF-B and increase in c-myc protein levels in primary B cells, NF-B activation was transient in the lymphoma B cells. These data suggest that the differential effects of CpG DNA on primary and lymphoma B cells occur due to differences in NF-B activation. The CpG ODN-induced impaired NF-B activation in the lymphoma B cells results in an imbalance between NF-B and c-myc activities, inducing apoptosis in TLR9-expressing B lymphoma cells. The B cell antigen receptor (BCR) binds to antigens in their native form. The BCR can distinguish subtle differences in antigen structure and trigger differential responses. Here, we analyzed the effects of antigen valency on the functions of the BCR using three different antigen systems - anti-BCR antibody -based antigens, phosphorylcholine (PC)-based antigens, and hen egg lysozyme (HEL)-based antigens. While both paucivalent and polyvalent antigens induced the redistribution of surface BCR into microdomains, polyvalent antigen-induced BCR microdomains persisted. Significantly, this trend was consistently observed in all three antigen systems studied. Ganglioside GM1, tyrosine-phosphorylated proteins and phosphorylated ERK colocalized with BCR microdomains, suggesting these function as surface signaling microdomains. Co-receptor, CD19 and MHC class II molecules, but not CD45 and transferrin receptor, concentrated in the BCR surface microdomains. Prolonged BCR caps were also concomitant with a reduction in BCR movement to late endosomes/lysosomes. Thus, antigen valency influences B cell responses by modulating the stability of BCR-signaling microdomains and BCR-mediated antigen transport.
    URI
    http://hdl.handle.net/1903/6720
    Collections
    • Cell Biology & Molecular Genetics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility