Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Interactive Color Mosaic and Dendogram Displays for Signal/Noise Optimization in Microarray Data Analysis (2003)

    Thumbnail
    View/Open
    TR_2005-44.pdf (1.566Mb)
    No. of downloads: 305

    Date
    2005
    Author
    Seo, Jinwook
    Bakay, Marina
    Zhao, Po
    Chen, Yi-Wen
    Clarkson, Priscilla
    Shneiderman, Ben
    Hoffman, Eric P.
    Metadata
    Show full item record
    Abstract
    Data analysis and visualization is strongly influenced by noise and noise filters. There are multiple sources of oisein microarray data analysis, but signal/noise ratios are rarely optimized, or even considered. Here, we report a noise analysis of a novel 13 million oligonucleotide dataset - 25 human U133A (~500,000 features) profiles of patient muscle biposies. We use our recently described interactive visualization tool, the Hierarchical Clustering Explorer (HCE) to systemically address the effect of different noise filters on resolution of arrays into orrectbiological groups (unsupervised clustering into three patient groups of known diagnosis). We varied probe set interpretation methods (MAS 5.0, RMA), resent callfilters, and clustering linkage methods, and investigated the results in HCE. HCE interactive features enabled us to quickly see the impact of these three variables. Dendrogram displays showed the clustering results systematically, and color mosaic displays provided a visual support for the results. We show that each of these three variables has a strong effect on unsupervised clustering. For this dataset, the strength of the biological variable was maximized, and noise minimized, using MAS 5.0, 10% present call filter, and Average Group Linkage. We propose a general method of using interactive tools to identify the optimal signal/noise balance or the optimal combination of these three variables to maximize the effect of the desired biological variable on data interpretation.
    URI
    http://hdl.handle.net/1903/6506
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility