Product Estimators for Hidden Markov Models
Product Estimators for Hidden Markov Models
Files
Publication or External Link
Date
2001
Authors
Ramezani, Vahid Reza
Advisor
Marcus, Steven
Citation
DRUM DOI
Abstract
In this thesis, risk-sensitive estimation for Hidden Markov Models isstudied from a dynamical systems point of view. We show that risk-sensitive estimators belong to a broaderclass of product estimators in which risk-sensitivity willbe shown to be related to certain scaling functions.The product structureand the scaling functions perspective give us new insights into the underlying mechanism of risk-sensitive estimation.For the first time, in a series of theorems and examples, we relate risk-sensitivity to the dynamics of the underlying process and exposerelations among the transition probabilities, risk-sensitivity andthe decision regions. We introduce the risk-sensitive Maximum A Posterior Probability (MAP) criterion for HMM's with discrete rangeobservation. This criterion is the discrete time finite dimensionalversion of the classic risk-sensitive estimation problem for linear/quadratic partial observation case. <p>The risk-sensitive filters take into account the"higher order" moments of the of the estimation error. In the context of risk-sensitive MAP for HMM's, we clarify and quantify the influence of risk-sensitivityon the behavior of the sample paths of the estimator; theproduct structure representationwill play an important role.