Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementation and Application of Principal Component Analysis on Functional Neuroimaging Data

    Thumbnail
    View/Open
    TR_2001-47.pdf (229.0Kb)
    No. of downloads: 774

    Date
    2001
    Author
    Gwadry, Fuad
    Berenstein, Carlos A.
    Horn, John Van
    Braun, Allen
    Metadata
    Show full item record
    Abstract
    Recent interest has arisen regarding the application of principal component analysis (PCA)-style methods for the analysis of large neuroimaging data sets. However, variation between different implementation of these techniques has resulted in some confusion regarding the uniqueness of these approaches. <p>In the present article, we attempt to provide a more unified insight into the use of PCA as a useful method of analyzing brain image data contrasted between experimental conditions. We expand on the general approach by evaluating the use of permutation tests as a means of assessing whether a given solution, as a whole, exposes significant effects of the task difference. This approach may have advantages over more simplistic methods for evaluating PCA results and does not require extensive or unrealistic statistical assumptions made by conventional procedures. <p>Furthermore, we also evaluate the use of axes rotation on the interpretability of patterns of PCA results. Finally, we comment on the variety of PCA-style techniques in the neuroimaging literature that are motivated largely by the kind of research question being asked and note how these seemingly disparate approaches differ in how the data is preprocessed not in the fundamentals of the underlying mathematical model.
    URI
    http://hdl.handle.net/1903/6209
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility