A Feature Based Approach to Automated Design of Multi-Piece Sacrificial Molds

Loading...
Thumbnail Image

Files

TR_2000-23.pdf (1.09 MB)
No. of downloads: 1716

Publication or External Link

Date

2000

Advisor

Citation

DRUM DOI

Abstract

This report describes a feature-based approach to automated design of multi-piece sacrificial molds. We use multi-piece sacrificial molds to create complex 3D polymer/ceramic parts. Multi-piece molds refer to molds that contain more than two mold components or subassemblies.

Our methodology has the following three benefits over the state-of-the-art. First, by using multi-piece molds we can create complex 3D objects that are impossible to create using traditional two piece molds. Second, we make use of sacrificial molds. Therefore, using multi-piece sacrificial molds, we can create parts that pose disassembly problems for permanent molds. Third, mold design steps are significantly automated in our methodology. Therefore, we can create the functional part from the CAD model of the part in a matter of hours and so our approach can be used in small batch manufacturing environments.

The basic idea behind our mold design algorithm is as follows. We first form the desired gross mold shape based on the feature-based description of the part geometry. If the desired gross mold shape is not manufacturable as a single piece, we decompose the gross mold shape into simpler shapes to make sure that each component is manufacturable using CNC machining. During the decomposition step, we account for tool accessibility to make sure that (1) each component is manufacturable, and (2) components can be assembled together to form the gross mold shape. Finally, we add assembly features to mold component shapes to facilitate easy assembly of mold components and eliminate unnecessary degree of freedoms from the final mold assembly.

Notes

Rights