Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Control of Large Actuator Arrays Using Pattern-Forming Systems

    Thumbnail
    View/Open
    PhD_98-6.pdf (8.321Mb)
    No. of downloads: 1181

    Date
    1998
    Author
    Justh, Eric W.
    Advisor
    Krishnaprasad, P.S.
    Metadata
    Show full item record
    Abstract
    Pattern-forming systems are used to model many diverse phenomena from biology,chemistry and physics. These systems of differential equations havethe property that as a bifurcation (or control) parameter passes through acritical value, a stable spatially uniform equilibrium state gives way to astable pattern state, which may have spatial variation, time variation, orboth. There is a large body of experimental and mathematical work on pattern-forming systems.<p>However, these ideas have not yet been adequately exploited inengineering, particularly in the control of smart systems; i.e.,feedback systems having large numbers of actuators and sensors. With dramatic recent improvements in micro-actuator and micro-sensortechnology, there is a need for control schemes betterthan the conventional approach of reading out all of the sensor informationto a computer, performing all the necessary computations in a centralizedfashion, and then sending out commands to each individual actuator.Potential applications for large arrays of micro-actuators includeadaptive optics (in particular, micromirror arrays), suppressingturbulence and vortices in fluid boundary-layers, micro-positioning smallparts, and manipulating small quantities of chemical reactants. <P>The main theoretical result presented is a Lyapunov functional for thecubic nonlinearity activator-inhibitor model pattern-forming system.Analogous Lyapunov functionals then follow for certain generalizations ofthe basic cubic nonlinearity model. One such generalization is a complex activator-inhibitor equation which, under suitable hypotheses,models the amplitude and phase evolution in the continuum limitof a network of coupled van der Pol oscillators, coupled to a network of resonant circuits, with an external oscillating input. Potentialapplications for such coupled van der Pol oscillator networks includequasi-optical power combining and phased-array antennas. <P>In addition to the Lyapunov functional, a Lyapunov function for the truncated modal dynamics is derived, and the Lyapunov functional isalso used to analyze the stability of certain equilibria. Basic existence, uniqueness, regularity, and dissipativity properties ofsolutions are also verified, engineering realizations of the dynamicsare discussed, and finally, some of the potential applications areexplored.
    URI
    http://hdl.handle.net/1903/6004
    Collections
    • Institute for Systems Research Technical Reports

    Related items

    Showing items related by title, author, creator and subject.

    • Analysis of a complex activator-inhibitor equation 

      Justh, Eric W.; Krishnaprasad, Perinkulam S. (1999)
      Basic properties of solutions and a Lyapunov functionalare presented for a complex activator-inhibitor equation witha cubic nonlinearity.Potential applications include control of coupled-oscillator arrays(for quasi-optical ...
    • Modeling and Control of Dynamical Effects due to Impact on Flexible Structures 

      Wei, Q. (1994)
      In the first part of this dissertation, we consider modeling and approximation of impact dynamics on flexible structures. A nonlinear model is developed through Hertz law of impact in conjunction with the dynamic equation ...
    • Computing Balanced Realizations for Nonlinear Systems 

      Newman, Andrew J.; Krishnaprasad, Perinkulam S. (2000)
      This paper addresses the problem of computability pertaining to the Scherpen(1994) theory and procedure for balancing of nonlinear systems. In contrastto Moore's (1981) balancing method for linear systems, the Scherpen ...

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility