Show simple item record

dc.contributor.authorAgrawal, Rakeshen_US
dc.contributor.authorMakowski, Armand M.en_US
dc.contributor.authorNain, P.en_US
dc.date.accessioned2007-05-23T10:06:24Z
dc.date.available2007-05-23T10:06:24Z
dc.date.issued1998en_US
dc.identifier.urihttp://hdl.handle.net/1903/5983
dc.description.abstractWe propose a general framework for obtaining asymptotic distributional bounds on the stationary backlog <I> W<SUP>A<SUB>1</SUB>+A<SUB>2</SUB>,c</SUP></I> in a buffer fed by a combined fluid process <I>A<SUB>1</SUB>+A<SUB>2</SUB></I> and drained at a constant rate <I>c</I>.<P>The fluid process <I>A<SUB>1</SUB></I> is an (independent) on-off source with average and peak rates <I> <FONT FACE="Symbol">r</FONT><SUB>1</SUB></I> and <I>r<SUB>1</SUB></I>, respectively, and with distribution <I>G</I> for the activity periods. The fluid process <I>A<SUB>2</SUB></I> of average rate <I><font face="Symbol">r</font><SUB>2</SUB></I> is arbitrary but independent of <I>A<SUB>1</SUB></I>.<P>These bounds are used to identify subexponential distributions <I>G</I> and fairly general fluid processes <I>A<SUB>2</SUB></I> such that the asymptotic equivalence <I><B>P</B>[W<SUP>A<SUB>1</SUB>+A<SUB>2</SUB>,c</SUP> > x]~<B>P</B>[W<SUP>A<SUB>1</SUB>,c-<font face="Symbol">r</font><SUB>2</SUB></SUP> > x](x<font face="Symbol">לּ/font><font face="Symbol">/font>)</I> holds under the stability condition <I><font face="Symbol">r</font><SUB>1</SUB>+<font face="Symbol">r</font><SUB>2</SUB> < c</I> and under the non-triviality condition <I>c-<font face="Symbol">r</font><SUB>2</SUB> < r<SUB>1</SUB></I>.<P>The stationary backlog <I>W<SUP>A<SUB>1</SUB>,c-<font face="Symbol">r</font><SUB>2</SUB></SUP></I>in these asymptotics results from feeding source <I>A<SUB>1</SUB></I> into a buffer drained at <I>reduced</I> rate <I>c-<font face="Symbol">r</font><SUB>2</SUB></I>. This reduced load asymptotic equivalence extends to a larger class of distributions <I>G</I> a result obtained by Jelenkovic and Lazar [18] in thecase when <I>G</I> belongs to the class of regular intermediatevarying distributions.<P><I>The equations in this abstract will not display properly unless you have the symbol font installed and your browser supports superscripts and subscripts. Otherwise, you will need to download the paper to see the equations properly.</I>en_US
dc.format.extent518333 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1998-25en_US
dc.relation.ispartofseriesCSHCN; TR 1998-11en_US
dc.subjectOn/off sourcesen_US
dc.subjectFluid queuesen_US
dc.subjectLong-range dependenceen_US
dc.subjectSubexponential distributionsen_US
dc.subjectExtreme value theory,en_US
dc.titleOn a Reduced Load Equivalence under Heavy Tail Assumptionsen_US
dc.typeTechnical Reporten_US
dc.contributor.departmentISRen_US
dc.contributor.departmentCSHCNen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record