Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Model Reduction via the Karhunen-Loeve Expansion Part I: An Exposition

    Thumbnail
    View/Open
    TR_96-32.pdf (342.7Kb)
    No. of downloads: 2912

    Date
    1996
    Author
    Newman, Andrew J.
    Advisor
    Krishnaprasad, P.S.
    Metadata
    Show full item record
    Abstract
    In formulating mathematical models for dynamical systems, obtaining a high degree of qualitative correctness (i.e. predictive capability) may not be the only objective. The model must be useful for its intended application,and models of reduced complexity are attractive in many cases.<p>In Part I of this paper we provide an exposition of some techniques that are useful in finding models of reduced complexity for dynamical systems involving flows. The material presented here is not new. The techniques we discussare based on classical theory such as the Karhunen-Loeve expansion and the method of Galerkin, and the more recent concept of "coherent structures." They have been heavily exploited in a wide range of areas in science and engineering.<p>The attempt here is to present this collectionof important methods and ideas together, at a high level of detail, in coherent form, and in the context of model reduction for simulation and control. In this manner we lead in to Part II which illustrates theirusefulness in model reduction by applying them to some elementary examples of distributed parameter systems which are related to processes found in semiconductor manufacturing.
    URI
    http://hdl.handle.net/1903/5751
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility