Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Fast Minimal-Symbol Subspace Approach to Blind Identification and Equalization

    Thumbnail
    View/Open
    TR_95-98.pdf (1.145Mb)
    No. of downloads: 278

    Date
    1995
    Author
    Sampath, B.
    Li, Ye
    Liu, K.J. Ray
    Metadata
    Show full item record
    Abstract
    A subspace-based blind channel identification algorithm using only the fact that the received signal can be oversampled is proposed. No direct use is made of the statistics of the input sequence or even of the fact that the symbols are from a finite set and therefore this algorithm can be used to identify even channels in which arbitrary symbols are sent. A modification of this algorithm which uses the extra information in the more common case when the symbols are from a finite set is also presented. This LS-Subspace algorithm operates directly on the data domain and therefore avoids the problems associated with other algorithms which use the statistical information contained in the received signal. In the noiseless case, it is possible for the proposed Basic Subspace algorithm to identify the channel exactly using the least number of symbols that can possibly be used. Thus, if the length of the impulse response of a channel is JT, T being the symbol interval, then it is possible to use this algorithm to identify the channel using an observation interval of just (J + 3)T. In the noisy case, simulations have shown that almost exact identification can be obtained by using a few more symbols than the theoretical minimum. This is orders of magnitude better than the other blind algorithms. Moreover, this algorithm is computationally very efficient and has no convergence problems.
    URI
    http://hdl.handle.net/1903/5679
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility