Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Voice, Data, and Video Integration for Multi-Access in Broadband Satellite Networks

    Thumbnail
    View/Open
    TR_93-15.pdf (1.408Mb)
    No. of downloads: 253

    Date
    1993
    Author
    Ghaffari, Behzad
    Geraniotis, Evaggelos A.
    Metadata
    Show full item record
    Abstract
    Multi-media integration of broadband services in a broadband satellite network is considered. Voice, data, video teleconferencing, and television with broad range of service (bit) rates are multiplexed through a broadband satellite, channel in a multiple-access fashion. Large (but finite) population sizes are considered with arrivals modeled by binomial distributions. A two-state minisource model is used for voice signals. For video, variable rate interframe coding is utilized to reduce the bandwidth requirements, and Markov phase processes model the modulation of the rates of the video teleconferencing and television signals.<P>Among these services, video and voice are real-time signals and can not tolerate large random delays. In our attempt to satisfy this, video and voice use the Synchronous Transfer Mode (STM) with a frame structure, while the data users (with their bursty traffic) send (and retransmit, if necessary) their packets randomly within a frame. The video and voice users make their schedules in advance by using a pre- assigned slot (status slot). The first portion of a frame is assigned to the variable rate video users, while the variable rate voice users fill up the last portion of the frame. Data packets fill up the remaining slots between these two movable boundaries in a random-access fashion. In this protocol, the delay introduced by the satellite is taken into consideration. This multiple-access integration protocol is optimized with respect to performance measures, such as the blocking probabilities for voice and video, the average delay for data, and the average throughput for voice, video, and data.
    URI
    http://hdl.handle.net/1903/5477
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility