Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Communication Channel Modeled on Contagion

    Thumbnail
    View/Open
    TR_93-78.pdf (917.3Kb)
    No. of downloads: 735

    Date
    1993
    Author
    Alajaji, Fady
    Fuja, Tom E.
    Metadata
    Show full item record
    Abstract
    We introduce a binary additive communication channel with memory. The noise process of the channel is generated according to the contagion model of George Polya; our motivation is the empirical observation of Stapper et. al. that defects in semiconductor memories are well described by distributions derived from Polya's urn scheme. The resulting channel is stationary but not ergodic, and it has many interesting properties.<P>We First derive a maximum likelihood (ML) decoding algorithm for the channel; it turns out that ML decoding is equivalent to decoding a received vector onto either the closest codeword or the codeword that is farthest away, depending on whether an ﲡpparent epidemic has occurred. We next show that the Poly-contagion channel is an ﲡveraged channel in the sense of Ahlswede (and others) and that its capacity is zero. We then demonstrate that the Poly- contagion channel is a counter-example to the adage, ﲭemory cannot decrease capacity ; the capacity of the Poly-contagion channel is actually less than that of the associated memoryless channel. Finally, we consider a finite-memory version of the Poly-contagion model; this channel is (unlike the original) ergodic with a non-zero capacity that increases with increasing memory.
    URI
    http://hdl.handle.net/1903/5422
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility