Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Extension of the Fixed-Rate Structured Vector quantizer to Vector Sources

    Thumbnail
    View/Open
    TR_91-106.pdf (1.225Mb)
    No. of downloads: 446

    Date
    1991
    Author
    Laroia, Rajiv
    Farvardin, Nariman
    Metadata
    Show full item record
    Abstract
    The fixed-rate structured vector quantizer (SVQ) derived from a variable-length scalar quantizer was originally proposed for quantizing stationary memoryless sources. In this paper, the SVQ has been extended to a specific type of vector sources in which each component is a stationary memoryless scalar subsource in dependent of the other components. algorithms for the design and implementation of the original SVQ are modified to apply to this case. The resulting SVQ, referred to as the extended SVQ (ESVQ), is then used to quantize stationary sources with memory (with know autocorrelation function). This is done by first using a linear orthonormal block transformation, such as the Karhunen- Loeve transform, to decorrelate a block of source samples. The transform output vectors, which can be approximated as the output of an independent-component vector source, are then quantized using the ESVQ. Numerical results are presented for the quantization of first-order Gauss-Markov sources using this scheme. It is shown that ESVQ-based scheme performs very close to the entropy-coded transform quantization while maintaining a fixed-rate output and outperforms the fixed-rate scheme which uses scalar Lloyd-Marx quantization of the transform coefficients. Finally, it is shown that this scheme also performs better than implementable vector quantizers, specially at high rates.
    URI
    http://hdl.handle.net/1903/5152
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility