Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates

    Thumbnail
    View/Open
    TR_90-60.pdf (1.144Mb)
    No. of downloads: 933

    Date
    1990
    Author
    Zhou, J.
    Tits, A.L.
    Metadata
    Show full item record
    Abstract
    FSQP 2.0 is a set of Fortran subroutines for the minimization of the maximum of a set of smooth objective functions (possibly a single one) subject to nonlinear smooth inequality constraints, linear inequality and linear equality constraints, and simple bounds on the variables. If the initial guess provided by the user is infeasible, FSQP first generates a feasible point; subsequently the successive iterates generated by FSQP all satisfy the constraints. The user has the option of requiring that the maximum value among the objective functions decrease at each iteration after feasibility has been reached (monotone line search). He/She must provide subroutines that define the objective functions and constraint functions and may either provide subroutines to compute the gradients of these functions or require that FSQP estimate them by forward finite differences. FSQP 2.0 implements two algorithms based on Sequential Quadratic Programming (SQP), modified so as to generate feasible iterates. In the first one (monotone line search), a certain Armijo type arc search is used with the property that the step of one is eventually accepted, a requirement for superlinear convergence. In the second one the same effect is achieved by means of a (nonmonotone) search along a straight line. The merit function used in both searches is the maximum of a objective functions.
    URI
    http://hdl.handle.net/1903/5008
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility