Show simple item record

dc.contributor.authorDayawansa, Wijesuriya P.en_US
dc.contributor.authorMartin, C.F.en_US
dc.date.accessioned2007-05-23T09:45:32Z
dc.date.available2007-05-23T09:45:32Z
dc.date.issued1990en_US
dc.identifier.urihttp://hdl.handle.net/1903/4982
dc.description.abstractWe consider the local asymptotic stability of a system dx/dt = F(z), z = C sup n , F : C sup n - C sup n is holomorphic, t  R, and show that if the system is locally asymptotically stable at some equilibrium point in the N sup th approximation for some N , then necessarily its linear part is asymptotically stable also.en_US
dc.format.extent170737 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; TR 1990-34en_US
dc.subjectIntelligent Servomechanismsen_US
dc.titleAsymptotic Stability of Nonlinear Systems with Holomorphic Structureen_US
dc.typeTechnical Reporten_US
dc.contributor.departmentISRen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record