Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    •   DRUM
    • A. James Clark School of Engineering
    • Institute for Systems Research Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distributed Detection of Weak Signals from Multiple Sensors with Correlated Observations.

    Thumbnail
    View/Open
    TR_88-100.pdf (614.1Kb)
    No. of downloads: 703

    Date
    1988
    Author
    Geraniotis, Evaggelos A.
    Chau, Yawgeng A.
    Metadata
    Show full item record
    Abstract
    We address two problems of distributed detection of a weak signal from dependent observations. In the first problem, two detectors must decide on the basis of their observations whether a weak signal is present or not. The observations of the two detectors consist of a common weak signal disturbed by two independent additive m-dependent or hi-mixing noise processes. Fixed-sample- size (block) detection is employed. The decisions are coupled through a common cost function, which consists of the sum of the error probabilities under the two hypotheses. In the second problem, the observations of each individual detector still consist of a common weak signal disturbed by an additive m- dependent or hi-mixing noise process, but the noise processes of the two detectors are now correlated. The cost function has a structure similar to that of the first problem. In both cases, the detectors employ suboptimal decision tests based on memoryless nonlinearities. Since the signal is weak, large sample sizes are necessary to guarantee high quality tests and the asymptotic performance is of interest. To determine the optimal nonlinearities for the two detectors, we identify new performance measures based on twodimensional Chernoff bounds, which correspond to the asymptotic relative efficiency (ARE) used for single-detector problems, and whose maximization implies the minimization of the aforementioned average cost function. This optimization results in integral equations whose solution provides the optimal nonlinearities. Numerical results based on simulation of the performance of the proposed two-sensor schemes are provided to support the analysis.
    URI
    http://hdl.handle.net/1903/4826
    Collections
    • Institute for Systems Research Technical Reports

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility