Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Computer Science
    • Technical Reports of the Computer Science Department
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CAUCHY-LIKE PRECONDITIONERS FOR 2-DIMENSIONAL ILL-POSED PROBLEMS

    Thumbnail
    View/Open
    CS-TR-3776.ps (979.8Kb)
    No. of downloads: 264

    Auto-generated copy of CS-TR-3776.ps (702.7Kb)
    No. of downloads: 642

    Date
    1998-10-15
    Author
    Kilmer, Misha E.
    Metadata
    Show full item record
    Abstract
    Ill-conditioned matrices with block Toeplitz, Toeplitz block (BTTB) structure arise from the discretization of certain ill-posed problems in signal and image processing. We use a preconditioned conjugate gradient algorithm to compute a regularized solution to this linear system given noisy data. Our preconditioner is a Cauchy-like block diagonal approximation to an orthogonal transformation of the BTTB matrix. We show the preconditioner has desirable properties when the kernel of the ill-posed problem is smooth: the largest singular values of the preconditioned matrix are clustered around one, the smallest singular values remain small, and the subspaces corresponding to the largest and smallest singular values, respectively, remain unmixed. For a system involving $np$ variables, the preconditioned algorithm costs only $O(np (\lg n + \lg p))$ operations per iteration. We demonstrate the effectiveness of the preconditioner on three examples.
    URI
    http://hdl.handle.net/1903/477
    Collections
    • Technical Reports of the Computer Science Department

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility