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Abstract. Ill-conditioned matrices with block Toeplitz, Toeplitz block (BTTB) structure arise
from the discretization of certain ill-posed problems in signal and image processing. We use a
preconditioned conjugate gradient algorithm to compute a regularized solution to this linear system
given noisy data. Our preconditioner is a Cauchy-like block diagonal approximation to an orthogonal
transformation of the BTTB matrix. We show the preconditioner has desirable properties when the
kernel of the ill-posed problem is smooth: the largest singular values of the preconditioned matrix
are clustered around one, the smallest singular values remain small, and the subspaces corresponding
to the largest and smallest singular values, respectively, remain unmixed. For a system involving np
variables, the preconditioned algorithm costs only O(np(lgn + lgp)) operations per iteration. We
demonstrate the effectiveness of the preconditioner on three examples.
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1. Introduction. The two-dimensional integral equation
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is often used to describe the process by which data in signal and image processing
applications i1s acquired. In optics, for example, t is called the point spread function
and describes the response of the system or measuring device to a single point of
light at coordinates (o, 3) [10]. Thus if the values f(oz, 3) represent light intensities
reflected from a three-dimensional object, the integral equation might be used to
model the blurring of that object when its picture is taken using a camera with a
warped lens.

For simplicity, suppose quadrature is used to discretize the integral, and suppose
p is the number of grid points «; in the o direction and n is the number of grid points
G; in the 3 direction. The integral equation becomes a system of np linear equations
of the form

(1) Tf=4g

where f is np x 1 with entries f(ozj,ﬁl), 1<j<p, 1<1<n Wenote that many
other discretization methods for the integral equation yield a system of np linear
equations in which p and n have analogous definitions.

A Toeplitz matrix 7; is one whose elements are constant along diagonals; that
is, the (k,j) entry in T; is given by tgjzj . In applications, properties of the kernel,
discretization process, and a suitable ordering of unknowns can cause 7' to have a
block Toeplitz structure in which each p x p block is Toeplitz. This structure arises, for
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example, by applying quadrature to a kernel ¢ of the form ¢(«, 5,7, 6) = t(y—«, 6= 3),
ordering the unknowns f(aj,ﬁl) first by increasing j, then by increasing [. In this
case, the (4, j) component in the (k, ) block is given by (T%1)i; = tgli;l) forl <1, 7 <np,
1 <k, < n. We then say that T is a block Toeplitz, Toeplitz block (BTTB) matrix.

Given g and T in (1), the discrete inverse problem is to recover f However, the
continuous problem is generally ill-posed in the sense that small changes in ¢ cause
arbitrarily large changes in f. Consequently, the matrix 7" will be ill-conditioned.
Recovery of f is then complicated by the fact that noise e is also present in the
measured data. That is, we have measured g rather than ¢, where

(2) Tf=g4+e=yg.

Given the ill-conditioning of T', the exact solution, f, to (2) is not a reasonable
approximation to f We instead seek an approximate solution f by solving a nearby,
more well-posed problem. This method of approximating f 1s called regularization.
We use a preconditioned conjugate gradient algorithm to compute such a regularized
solution. A discussion of the methods of direct and iterative regularization techniques
can be found in [15].

Iterative methods like conjugate gradients can take advantage of the well-known
fact that matrix-vector products involving BTTB matrices with n blocks of size p
can be computed in O(np(lgp + lgn)) operations by embedding the matrix inside
a 2pn x 2pn block circulant matrix with circulant blocks [4]. Also, preconditioners
for BTTB matrices which are block circulant (BC), circulant block (CB), or block
circulant with circulant blocks (BCCB) have been found to be very efficient [4, 23, 1].
For example, if the preconditioner is determined to be block Toeplitz with circulant
blocks (BTCB), applying the preconditioner can be reduced to solving p systems
involving n x n Toeplitz matrices [4]. However, for indefinite and/or ill-conditioned
systems, the O(nlg?n) and O(n?) factorization algorithms for Toeplitz matrices can
be numerically unstable; these algorithms can require as many as O(n®) operations
in order to maintain stability [25, 12, 7].

To overcome this difficulty, we make use of the fact that Toeplitz matrices are
related to Cauchy-like matrices by fast orthogonal transformations [17, 9, 11]. The
particular Cauchy-like matrices discussed in §2 permit fast matrix-vector multiplica-
tion. An advantage of Cauchy-like matrices i1s that their inverses are also Cauchy-like,
unlike Toeplitz matrices whose inverses are not generally Toeplitz. In addition, modi-
fied complete pivoting can be incorporated in the L DU factorization of a Cauchy-like
matrix for a total cost of only O(n?).

In the course of this paper we develop a block Cauchy-like preconditioner that can
be used to filter noise and accelerate convergence of the conjugate gradient iteration
to an approximate solution of (2) when 7' is BTTB. This preconditioner is the two-
dimensional generalization of the preconditioner for Toeplitz matrices discussed in
[22]. We begin with a discussion in §2 of Cauchy-like matrices and some of their
important properties. We discuss the regularizing properties of conjugate gradients
and our choice of preconditioner in §3. In §4 we show that our preconditioner has
desirable properties. Computational issues are the focus of §5, where it is shown that
each iteration can be completed in O(pn(lgp + lgn)) operations. Section 6 contains
numerical results for several examples, and §7 presents conclusions and future work.



2. Transformation from Toeplitz to Cauchy-like structure. A matrix C
having the form

T,

(3) C = (%7]) (ai,b]' ECZXl;wZ',Hj EC;wHﬁHj)
wi — 0; 1<4,j<n

is called a Cauchy-like, or generalized Cauchy, matrix. If £ = 1 and a;b; = 1, then

the matrix is said to be Cauchy. The matrix C' can also be identified as the unique

solution of the displacement equation

(4) QC -0 = AB"
where
af by
Q= diag(wy, ...,wpn), @ =diag(ty,...,0,), A= , B =
al b

The matrices A and B are called the generators of C' with respect to Q2 and O,
and £ < n 1s called the displacement rank. Notice that only the 2nf + 2n non-zero
entries of A, B, Q, © need to be stored to completely specify the entries of the matrix.
Fortunately, certain properties of Cauchy-like matrices insure that LU factorizations
of Cauchy-like matrices may be computed using only the matrices 2, © and the gen-
erators without ever forming the matrix C'; see [9], for example.

One disadvantage of Toeplitz matrices is that permutations of Toeplitz matrices
are not necessarily Toeplitz, so that incorporating pivoting into fast factorization
schemes becomes difficult and expensive. However, because of (4), it is easy to show
the following (see [17, 11], for example):

PrROPERTY 1. Row and column permutations of Cauchy-like matrices are Cauchy-
like, as are leading principal submatrices.

This property and the fact that Schur complements of Cauchy-like matrices are
Cauchy-like [9] lead to fast algorithms for factoring Cauchy-like matrices which can
pivot for stability [9, 11].

We use the algorithm developed by Gu [11] which performs a fast O(¢n?) variation
of LU decomposition with modified complete pivoting. Recall that in complete pivot-
ing, at every elimination step one chooses the largest element in the current submatrix
as the pivot in order to reduce element growth. Gu proposes instead that one find an
entry sufficiently large in magnitude by considering the largest 2-norm column of one
of the generators that remains to be factored at each step. This algorithm computes
the pivoted LU factorization (C'= PLUQ where P and ) are permutation matrices)
[11, Alg. 2] using only the generators, which are easy to determine and to update
(see §5), and Gu shows that the algorithm can be efficient and numerically stable.
Although the Cauchy-like matrices of interest to us are full, they have displacement
rank £ = 1 or 2, which makes them both efficient to store using relation (4) and
fast to factor. For our purposes it was convenient to set D = diag(u11,.. ., 4nn) and
U «— D7'U to obtain the equivalent factorization C' = PLDUQ.

We also exploit the following property of Cauchy-like matrices [17].

PROPERTY 2. The inverse of a Cauchy-like matrix is Cauchy-like:

Hi—w]'

Ty
(5) Cc-'=_ ( L; Wy ) (l’z’,w]’ ECZXl).
1<ij<n
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The generators X and W can be determined from the relations [17]
(6) CX =4, wWrc=n"

Thus, given the LU factorization of ' solving for X and W requires only O(¢n?)
operations and is stable when C' is well-conditioned.

The third important property is that Toeplitz matrices also satisfy certain dis-
placement equations [21, 9] which allow them to be transformed via fast Fourier
transforms into Cauchy-like matrices [17, 9]:

PrROPERTY 3. Every Toeplitz matrix T satisfies an equation of the form

(7) RyT —TR_; = ABT

where A € C"*Y, B e C"**, 1< (<2, and

0 0 0 ¢

1 0 0
Rs=1] 0 1

o .- 0 1 0

The Toeplitz matrix T' is orthogonally related to a Cauchy-like matrix
C=FTS;F*

that satisfies the displacement equation

(8) S1C —CS_y = (FA)(BYS; F*y,
where
S1 = diag(1, e%, e eH(n=t ),
2n—1)mwe

Sy = diag(e%,...,e ),

So = diag(l,e™ ..., e%("_l)),

and F' is the normalized inverse discrete Fourier transform matrix defined by

F= % [exp (%U — Dk - 1))] 1<ik<n

We note that Toeplitz matrices are orthogonally related to Cauchy-like matrices
through other fast transformations as well [11]. However, the particular relation in
Property 3 can be exploited to determine a O(n lgn) stable algorithm for multiplica-
tion by the inverse of the Cauchy-like matrix [22].

Property 3 implies that if 7" is a Toeplitz block matrix, it satisfies

(IF)T(I®SF)=C
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where ® denotes the Kronecker tensor product and C is Cauchy-like. Also, since each
block of C'is of the form FT;; S5 F™*, where T;; is the (7, ) block of T', the blocks of
C' are themselves Cauchy-like. In this case, however, the displacement rank ¢ of (' is
between p and 2p. Thus, algorithms like Gu’s algorithm which rely on C' having small
displacement rank will become expensive if p is large, requiring O(p(np)?) operations
for a full factorization. Instead, we seek an approximation to 1" which, under an
appropriate transformation, becomes block diagonal with Toeplitz blocks. Then its
associated Cauchy-like matrix will be block diagonal with Cauchy-like blocks. In order
to obtain a full factorization of the latter matrix, one need only apply Gu’s algorithm
to each individual block on the block diagonal. Following the discussion in §3.2, we
observe that a full factorization of the approximation can be obtained in only O(pn?)
operations.

3. Regularization and preconditioning. We could solve the linear system (2)
exactly by transforming the BTTB matrix 7" to a Cauchy-like matrix as mentioned
above and factoring. However, the solution we would compute in this manner would
be hopelessly contaminated with noise, as we now discuss. The analysis will be based
on the following four assumptions:

1. The matrix 7" has been normalized so that its largest singular value is of order
1.

2. The uncontaminated data vector ¢ satisfies the discrete Picard condition;i.e.,
the spectral coefficients of ¢ decay in absolute value faster than the singular
values [27, 14].

3. The additive noise is zero-mean white Gaussian. In this case, the components
of the error e are independent random variables normally distributed with
mean zero and variance €.

4. The noise level, ”;Hz, is strictly less than one.

Let 7= UXV7” be the singular value decomposition of 7" and let f be the exact
solution to the noisy system

(9) Tf=g=g+e.

The spectral coefficients of the exact solution § and noise e are { = UTgand n = U7e,
respectively. For the remainder of the paper we will assume that N = pn is the
dimension of T'. Using (9), we observe that

N
G+
(10) f ZZ:; o Vg,
where v; denotes the ith column of V and o; denotes the ith diagonal element of the
diagonal matrix X.

Under the white noise assumption, the coefficients 7; are roughly constant in size,
while the discrete Picard condition tells us that the {; go to zero at least as fast as
the singular values o;. Thus, components for which {; 1s of the same order as 7; are
obscured by noise.

By assumptions 2 and 4, there exists m > 0 such that for all ¢ > m, the (; are
indeed indistinguishable from the 7;. Further, there exists 0 < m* < m such that
for ¢ > m* it is never the case that |(;| > |n;|. We therefore choose to partition the
columns of V into bases for the upper, lower, and transition subspaces as follows.
We say that the upper subspace is the space spanned by the first m* columns of V.
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Hence the upper subspace corresponds to the largest m* singular values. The lower
subspace is the space spanned by the last N —m columns for V'; i.e. those columns of
V corresponding to the smallest singular values. Finally, the transition subspace is the
space spanned by the remaining m—m* columns of V. Since these columns correspond
to the mid-range singular values, the transition subspace is generally difficult to resolve
unless there is a gap in the singular value spectrum.

Comparing the exact solution f of (1) to f in (10), we see that the greatest
difference is in the magnitude of the components in the lower subspace. Thus we
choose to use an iterative method called CGLS which at early iterations produces a
regularized solution with small components in the lower subspace and which resembles
f in the upper subspace. An appropriate preconditioner will speed convergence to
this approximate solution without adding components in the lower subspace.

3.1. Regularization by preconditioned conjugate gradients. The stan-
dard conjugate gradient (CG) method [18] is an iterative method for solving systems
of linear equations for which the matrix is symmetric positive definite. If the matrix
is not symmetric positive definite, one can use the CGLS algorithm [18], a variant
of standard CG that solves the normal equations in factored form. If the discrete
Picard condition holds, then CGLS acts as an iterative regularization method with
the iteration index taking the role of the regularization parameter [8, 13, 15]. The
spread and clustering of the singular values govern the speed and convergence of the
algorithm [26]. Preconditioning is therefore often applied in an effort to cluster the
singular values and thus, to speed convergence.

According to (10), we desire that the preconditioner cluster only the large singu-
lar values for which |(;| > |n;]. Unfortunately, the indices for which this holds are
difficult, if not impossible, to determine in advance. However, as we show in §4, it
is possible to choose a preconditioner that clusters most of the largest m* singular
values while leaving the small singular values, and with them, the lower subspace, rel-
atively unchanged. In this case, the first few iterations of CGLS will quickly capture
the solution lying within the upper subspace. Ideally, a modest number of subse-
quent iterations will provide some improvement over the transition subspace without
significant contamination from the noise contained in the lower subspace.

3.2. The preconditioner. The given BTTB matrix 7" has the following block
structure:

1o T, T ... Ti_,
Ty To T-1 ... Ty_,

T = T T e s T, |
T, .. ... T, Ty

where each T is Toeplitz; that is, (Tj)r = t;ﬁl. For each T;, let us define H; to be
its T. Chan circulant approximation [6], so that the diagonals of H; are given by

IO
I e T
! K}, 0<—j<n



The matrix ; is the closest circulant matrix in the Frobenius norm to 7; [6]. Finally,
we define H to be the BTCB matrix

Hy H_y H_o .. Hy_,

H1 Ho H_1 H2—n

H = Hy H,y .. Hzo,
H,_1 ... ... Hy Hy

It was shown in [4] that H is the closest BTCB matrix to 7" in the Frobenius norm.
The goal is to develop a preconditioner from an appropriately transformed version of
the matrix H.

We define the matrices F' and Sy as in Property 3, with the dimension being either
p or n as is appropriate in context. Since the matrices T" and H are block Toeplitz,
the matrices (I @ F)T(I @ F*) and (I @ F)H(I ® F*) with their (¢, j) blocks given
by FT;_;F* and F'H;_; '™, respectively, are also block Toeplitz.

Now since the H; are circulant, they can be diagonalized by the matrix ' [4];
therefore, for each (7, j), F H;_; F'* is diagonal. In §1 we assumed that the unknowns
are ordered first in the increasing « direction, then in order of increasing 3. Let P
be the N x N permutation matrix which reorders the unknowns in the increasing g
direction first. Then

T =PI F)T(I®F)PT
1s a block matrix with Toeplitz n x n blocks while
H=PIoF)H(I®F)PT

is a block diagonal matrix with n x n Toephtz blocks.

Since T has size n Toeplitz blocks, T is related to a Cauchy-like matrix C' as
mentioned at the end of §2:

C=(IoRT(IoS;F)

where I and Sy now have dimension n. Each block of €' is Cauchy-like. Likewise, I
is related to a Cauchy-like matrix with Cauchy-like blocks:

K=o FH(IoS,F).

Since H is block diagonal with Toeplitz blocks, K is block diagonal with Cauchy-like
blocks. Finally, we observe that solving T'f = ¢ must be equivalent to solving

Cf=g
where f = (I ® FSp)P (I®F)f,g_(I®F)P(I®F)g.

As mentioned before, since ' is Cauchy-like, we could apply Gu’s factorization
algorithm directly to it; however the cost of a full factorization would be O(p(np)?)
operations. Fortunately, K, our approximation of C, is block diagonal. Since each of
the p blocks Kj; is an n x n Cauchy-like matrix of displacement rank 2, to completely
factor K requires only Q(pnz) operations.

A factorization of Kj; using a modified complete pivoting strategy may lead to
an interchange of rows (specified by a permutation matrix P;) and columns (specified
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by a permutation matrix ;). Let P = diag(Py,...,P,) and Q = diag(Q1,...,Qp).
We will use an appropriate piece of the matrix PTKQT, to be defined shortly, to
precondition the matrix PTCQT. First we summarize the sequence of transformations
which leads to the development of the preconditioner:

1. Transform the matrices 7' and H to the Toeplitz block matrices T and H:

T P(I® F)T(I® F*)PT

H = P(IeF)H(I®F*)PT

Note that I is also block diagonal.
2. Transform the matrices 7" and H to Cauchy-like matrices with Cauchy-like
blocks Cj;, K;;, respectively:

C = (IoF)I(IeS;F)
K = (I@F)HI®S;F")
3. Permute the matrices C' and K using the block diagonal permutation matrices
P and @:
Cc = PTC:vQT
K = PTKQT~

Note that since all the transformations are accomplished with unitary matrices,
C and T have the same singular values, as do K and H.
Hence, setting y = Qf, and z = PT§, the problem we wish to solve is

(11) Cy=z.

We choose a left preconditioner M, determined from K, so that
M 'Cy=M""z

and use CGLS to solve the corresponding normal equations

(12) (M~*Oy (M~ Oy = (M~ Oy M~z

Recall from §3.1 that we wish to design a preconditioner that clusters the largest
m” singular values while leaving the the small singular values unchanged. Notice also
that the singular values of K, our approximation to C', are simply the union of the
singular values of the K;; = PZ»TIN(MQZ»T. Let T be set of the largest m* singular values
of K. Then precisely m; singular values of K;; are in ', with m* = Zle m;. As a
result of pivoting during Gu’s factorization algorithm, the m; x m; leading submatrix
of K;; corresponds to the well-conditioned part of K while the rest contributes to the
ill-conditioned part. Let K;; = L;; Dy Us; and write this equation in block form, where
the upper left blocks are m; x m;:

1) () (1)
a3 [A” K ]:lL,. 0]

DM
NI I

0 D&

Ui(il ) UZ iz )
0 5 (3)

2]

Lg?) are lower triangular, UZ»(Z»I), UZ»(Z»S) are upper triangular, and Dgl»l) and

Here L(»»l)

27

Dgf) are diagonal. Then we define

v Yool b o[ ud o KD g
Z‘[ 0 IH 0 IH 0 I]_[ 0 I]'
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Finally, we choose as our preconditioner the matrix
M = diag(M, ..., M,).

Since leading principal submatrices of Cauchy-like matrices are Cauchy-like, M is a
block diagonal matrix with Cauchy-like blocks each augmented by an identity.

Let us compare our preconditioning scheme with the preconditioning method
given in [13] for the BTTB matrices of discrete ill-posed problems. In [13] the precon-
ditioner is determined by forming the T. Chan BCCB approximant to 7', computing
its eigenvalues via 2-D fast Fourier transforms, and then replacing all the eigenvalues
below a tolerance with ones. Therefore, our method is similar to their BCCB based
preconditioner in that we also rely on a rank revealing factorization to determine the
appropriate cutoff which is used to form the preconditioner. We choose our cutoff
tolerance in a manner similar to that given in [13]. However, our preconditioner is
formed from a BTCB approximant to 7', which requires approximating 7" only on one
level unlike the BCCB approximant which requires approximating 7" on two levels.

The most notable difference is that is we rely on a transformation to Cauchy-
like matrices; therefore we may use a fast pivoted factorization scheme, rather than
2-D Fourier transforms, to generate the necessary rank revealing information. While
the preconditioner in [13] requires O(pn(lgp + lgn)) operations to precompute, our
preconditioner requires, in the worst case, O(pb,, lg p+pnlgn+> _ m?) operations to
precompute, where b,, denotes the maximum block bandwidth of the matrix. However,
in applications the block bandwidth is sometimes small compared to n and when
the blocks of 1" are symmetric, the number of operations required to initialize our
preconditioner can be reduced to O(pnlgn + b, plgp+ ms) where my; = m? + mf)/z +

r/2
smlall, for example) we have observed m™ is small relative to pnlgn, which implies our

m? when p is even. In some cases (when the dimension of the upper subspace is

preconditioner can be just as cheap to precompute. Our preconditioner is competitive
with the BCCB matrix in that it is stable to compute and can be applied in at most
O(pnlgn), rather than O(pn(lgn + lgp)), operations. In the next section, we show
that our preconditioner is just as effective as the one in [13] in clustering the large
singular values around one. Further, we show that the small singular values remain
small and that the upper and lower subspaces remain unmixed.

4. Properties of the preconditioner. In this section we give theoretical re-
sults which show how successful our preconditioner is in filtering noise and accelerating
convergence to a regularized solution.

4.1. Clustering. Under the assumptions in §3 for an ill-conditioned matrix C,
in order for the first few iterations of CGLS to capture the solution corresponding to
the largest m* singular values, the preconditioner must cluster the majority of the m*
singular values while leaving the small singular values and lower subspace essentially
unchanged. We show that the question of how well our preconditioner M clusters
the singular values can be reduced to the question of how well K approximates C', or
equivalently, how well H approximates 7.

We argue as follows. We first note that to show that the largest m* singular
values of M ~1C' cluster around one, it suffices to show that the smallest m* singular
values of T — M ~1C cluster around zero. We denote the k-th largest singular value of
a matrix Z by o3(Z), and the k-th largest eigenvalue by Ax (7).



Let K —C' = R. Now K = M + S, where S is block diagonal with blocks

0 K2 ]

A I R

Thus, M — C' = R — 5. We therefore obtain the equality
(14) I-M'C=M"YR-S)=M"YK-C)-M1S.
Now let

0 0 0 KW@
P R P

Define EFg and Fjas to be the block diagonal matrices
Eg =diag(Y1,...,Yy) and En = diag(Zy, ..., Z,).

Then M~'S = Es+ Ear, where Eg and Ear each have rank N —m*. From Theorem
3.3.16 of [19] ,

U'k+N—m*(M_1S) < O'k(ES) k=1,.. .,m*.

Applying the same theorem to Equation (14) with 2 <i4+j < N4+1for N—m*+1<
j < N we have

O'Z'_|_]'_1(I— M‘l(]) O'Z'(M_l([( — C)) + Uj(M_ls)
(M_l)O'Z'([( — C) + U]'(M_ls)
O'l(M_l)O'Z'(H —T) +Uj+m*—N(ES)~

INIAIA
2

In particular,

O'Z'(H — T)

(15) CirN—m(I — M~1C) < ox (D)

+o1(Fg) i=1,...,m".

Hence, under the assumptions that the preconditioner is well-conditioned and that
the matrix Eg has sufficiently small elements, the clustering of the singular values of
I — M~1C around zero depends on the clustering of the first m* singular values of
H — T around zero. We now discuss two special cases for which H — T has singular
values clustered around zero. First we will need the following lemma from [4].

LEMMA 4.1 (R. CHAN AND Q. JIN). Assume that the BTTB matrix T is sym-
metric. Let the entries of block T; be denoted t;lk) = tl(;)—kl for1<j k<p 1<i<n.
Assume that the generating sequence of T is absolutely summable, i.e.,

iiuﬂ <J< .
i=0 j=0

Then for all € > 0, there exists a k* > 0 such that for all p > k* and n > 0, at most
O(n) eigenvalues of H — T have absolute values exceeding .

Since H — T is symmetric for symmetric BT'TB matrices 7', combining Equation
(15) with Lemma 4.1, we obtain the following.
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THEOREM 4.2. AssumeT is a symmetric BT'TB matrix with an absolutely summable
generating sequence. Then for all € > 0, there exists a k* > 0 such that for all p > k*
and n > 0, at most O(m* — n) singular values of I — M~1C exceed m +o1(Es).

Let us consider another special case for which we are guaranteed clustering. Let
Cy, denote the Banach space of all 27-periodic, continuous, complex-valued functions
equipped with the norm || || . This class of functions contains the Wiener class [2].
For all h € Cy;, let the Fourier coefficients of h be defined by

ﬁ:i- h(0)e™do, k=0+1,42,---,

27 J_ .

where i = \/—1. Let T be the p x p complex Toeplitz matrix whose diagonals are
given by 1y, and let H be its T. Chan circulant approximation. Finally, let the BTTB
matrix 7' be given as T'= R ® T, where R is a non-singular n x n matrix. A lemma
proved by R. Chan and M. Yeung [3] will be useful.

LEmMma 4.3 (R. CHAN AND M. YEUNG). Let h € Cyr. Then for all € > 0, there
exist k* and j* > 0, such that for all p > k™,

T—H=U+V

where

rank(U) < j*
and
V]2 <e.

Applying this lemma to T" we obtain the following result.

LEMMA 4.4. Given ¢ > 0, let k*, j*, U, and V be defined as in Lemma 4.3 with
h € Cs,. Then

oi(T — H) < ||R|2e, N—nj*+1<i<N.
Proof: Using [19, lemmas 3.3.16 and 4.2.15],
oi(T—H)<oj(RoU)+ 0 (ROV)< 0i(ROU)+ ||R||2¢, i=1,...,N.
However, since U has rank j*, the rank of R @ U is N — nj*, so that
oi(T— H) < ||Rll2e, N—nj"+1<i<N. O

We use Lemma 4.4 and Equation (15) to deduce the following.

THEOREM 4.5. Let the BTTB matrix T be defined as T = R ® T for a given
n x n nonsingular matrix R, and let the entries of the p x p matrix T be given by i
defined above with h € Cor. Then for all ¢ > 0, there exist k* and j* > 0, such that
for all p > k*, at most m* —nj* singular values of I — M ~1C exceed gj}%ﬂj\% +o1(Fs).

In both the aforementioned cases, assuming the values m; were chosen appropri-
ately, the preconditioner will cluster most of the m* singular values of the precondi-
tioned matrix around one when a sufficient number of the singular values of T'— H
are small. As these special cases illustrate, a proof that our preconditioner is effective
at clustering the large singular values is reduced to a proof that many of the singular
values of T'— H are small for the given BTTB matrix 7.

11



4.2. Unmixing results. Recall that the transformation from the problem in-
volving T" to one involving C' was accomplished using a sequence of orthogonal trans-
forms. Thus, the singular values of 7" and (' are the same, as is our definition of the
upper, lower, and transition spaces in §3. That is, we have changed the bases for the
respective spaces, but we have not mixed them.

For the approximate solution generated by CGLS in early iterates to be essentially
unaffected by noisy components in the lower subspace, we require that the precondi-
tioner not mix the upper and lower subspaces. The following theorem tells the extent
to which preconditioning by M mixes these subspaces.

THEOREM 4.6. Let k be the dimension of the subspace corresponding to the
smallest k singular values and let

S0 0 vy
C = [1@Q2Q3]| 0 Xo 0 Vil

0 0 || v

S0 0 vy

M~'C = [Ql Q> Qs] 0 3 0 ‘:/2*

0 0 S|z

be singular value decompositions with Vs, Vs € CV*F and Vi, Vi € CNX™" . Then

* Y/ ON- -
1V Vall2 < === (max {1, max]|K{]2}).

m

Proof: Using the decompositions we have

ViVs (VC~HYM(M™*CVs)

STIQIMQss.

Since 7 has orthonormal columns, as does Q3, it follows that
Vi Valle < 10 2 = Z=E4 (max{ 1 max | K]|2). ©
T * T * 2

We note that if the preconditioner developed in [13] for their right preconditioning
scheme 1s applied to the left rather than the right, a similar result can be obtained.

Next we show that 6; ~ o; for o; corresponding to the last N — m™ singular
values, and thus 6x_p41 1s small. Hence, if M is well-conditioned, we are guaranteed
that the upper and lower subspaces remain unmixed.

For given values of m;, we first rewrite C' in block form:

[ o) o o) of o)
of o of o ofy
oy o o) o) )
o= ) oy oy ol
e e e O RPN
oy ) oy oy O




1) . 4) . . . . _
where C’Z(Z») 1s m; x m; and C’Z(Z») is n — m; x n —m;. Likewise, we rewrite M ~1C

IR ST G G U R G S G NPT < vy &l

oh Cry Cry) cn oy
Ky)TIC KyTIOR KYTIO kTR L kYT

Mlc=| 5 C5y C3 Cy . G
K7 kG kG)Tely) kG k)TN

'y ¥ 3 L el

Let the rank m* matrices Epy,, E¢, be defined from the odd row-blocks of C' and
M-iC:

E = Czl Czl C122 022 c. CZn
Cy — . . . . ) ) ’
o dy o
e
Ey = Ky Oy Koy O Koy Chy Koy "Gy o0 Ky Oy
RO KGR kBT kTR L e

and let £y be the rank N — m™ matrix defined from the even row-blocks of C' and
M-1C:

C121 C121 C122 C122 c CZn
By = . . . . . .
o o ol ooy ol

Under this partitioning, it easy to verify the relations

(16) (M~ICY(M~C) = Ey+FE
c*C = Ec+F

where Ey, = Ey Ey, B = EG Eq , and B = ETE,. Consequently, we obtain the
following:

THEOREM 4.7. The (m* + i)th singular value of each of the matrices C' and
M~YC lies in the interval [0, 0;(E)], fori=1,..., N — m*.

Proof: Since the matrices in (16) are all Hermitian, we may apply Corollary IV.4.9
and problem 4, page 211, of [24] to obtain

AN (E) + Ae i Bar) € Al (MO (M71C)) < Ao (En) + Ai(E)
and

AN(E) 4+ A i (Fe) < A 4i(C7C) < A1 (Ee) + Ai(E).
13



However, Ay (F) =0 and Ap+41(Ensr) = 0 = A 41(F¢), and thus
0 < A (MTHO)Y (MTHO)) < At (Bar) + Xi(E) = Xy ()
and
0 < Ame4i(C7C0) < A1 (Ec) + Mi(E) = Ai(E).

The proof i1s completed by taking square roots. O

4.3. Properties of the factorization. The theorems in §4.1 and §4.2 show
that the preconditioner will be effective under two restrictions. First M, and hence
each Ki(il), must be well conditioned. Second, the entries in £ and Fs are required to
be small. We now discuss to what extent these conditions hold for integral equation
discretizations. We begin by showing how the entries of K are computed from the
elements of H.

Since the entries of K can be written in terms of the generators of each block,
it is necessary to discuss how these generators are obtained. Because each block of
H is circulant, the non-zero entries of (I ® F)H (I ® F'*), which lie on the diagonals
of each of its blocks, are the eigenvalues of each block of H. Let /\g) for 1 <k < p,
1—n <1 < n—1 denote the kth eigenvalue of block H;. Tt is well known that
the eigenvalues of a p x p circulant matrix can be computed by means of an FFT
in O(plgp) operations. Since there are at most 2n distinct Hj, all the /\g) can be
computed in at most O(nplgp) operations. The matrix P permutes these eigenvalues
so that H = P([ e MHI® F*)pT is a block diagonal matrix with p, n x n Toeplitz
matrices H; on its diagonal. The diagonals of H; are given by fy) = /\g, 1-n<j<
n—1,i=1, ... p.

Since H; is Toeplitz, it satisfies (7) with A = A; and B = B;. Examination
of Equation (7) shows that the entries of the n x [ matrices A; and B; are easily
determined. The first column of A; is the first unit vector, and the second column is
given by

A7) (0890, 800, 0BT L )

The first column of B; is

LR RO C RO TC I O U NN U OO
and the second column is the last unit vector. The generators for K” are then fL =
FA; and B; = conj(F Sg)B;, where conj(-) denotes complex conjugation, with 7' and
Sou as described in Property 3. Since A; and B; can be computed by means of the
inverse fast Fourier transform of size n, computing all p generator pairs requires a
total of O(nplgn) operations.

Now the absolute value of the (k, ) entry of Ky is given by

i T30
[(” |ak j |

N ok — 05

where wy, and §; are the kth and jth diagonal entries of S; and S_; defined in Property
3, respectively, and d;cl)T and I;;l) denote the kth row of A; and the jth row of By,

14



respectively. Following the discussion in [22],

(T 5(D)
"ol (OT5(D)
——— < 10]a; " b;
|Wk—‘%| |k i
away from the corners and the diagonal of f(”.

By direct computation it can be shown that

@R = %conj(&;”) +e =yl = T
n

where I/](Cl) is the kth entry in the second column of A; and 5](»1) is the jth entry in the
first column of F'Sgconj(B;). Therefore it is the normalized inverse Fourier coefficients
of the second column of A; and the first column of Syconj(B;) that determine the
(l)T[;(l)|

-

magnitude of |a,
However, since H; is the T. Chan circulant approximant of 7;, we have [5]

n—1
W= S - B oo
s=—n+1 n
Since fy) = /\gj) we use the above substitution in Equations (17) and (18). Defining
t§”> = 0, we obtain
vy l)| < Z ||v |, where
s——n+1
n_l . .
= S s sy
j=0
and
l)| < — 3 (s)| where
B V/_s 2;;1 k

Z

e’

But vl(cs) is just the kth inverse Fourier coefficient of a vector having entries (tg_j) +
t(n_])) j=0,...,n— 1 Likewise, u(s) is just the kth inverse Fourier coefficient of a

vector having entries e = (t( 7) —|—t(n ])) j=0,...,n—1
(s)

Therefore, if the kernel ¢ in the integral equation is smooth, for every s v;”’ and

ugcs) will be large only for small indices k. Hence,

@B 10
lwi = 0;1 ~ V/n

away from the corners of f(”. R
Thus, by relating the entries of Kj; back to the entries in 7' as shown above, we
discover the following property:

(lve] + 1€51) <1

15



PROPERTY 4. Suppose T is the BTTB matrix which results from the discretiza-
tion of a smooth kernel t, normalized so the maximum element is one. Forl=1,... p,
let f(” = FfNIlSE’jF* where f]l is a n X n Toeplitz matrix from the block diagonal of
the matrix I defined in §3.2. Then for n sufficiently large, there exists an € < 1 and
my <& n such that all the elements off(” are less than € in magnitude except for those
located in the four corner blocks of total dimension m; x my.

Consequently, each Cauchy-like block of K can be permuted to contain the large
elements in its upper left block. We have observed that when Gu’s algorithm is applied
to Ky having the structure described in Property 4, his pivoting strategy is such that
Kl(ll) will contain the four corner blocks. In fact, any pivoting strategy that yields this
type of permutation will give a reasonable preconditioner for our scheme. We refer
the interested reader to [11] for details of Gu’s modified complete pivoting strategy.
The key fact is that his algorithm makes its pivoting decision based on the size of the
elements in the generator corresponding to the block that remains to be factored.

Thus, the components of the matrix Fg in §4.1 are small, and therefore our
preconditioner has the property that the largest singular values of the preconditioned
matrix are clustered, provided that the singular values of K — C' are small. But if the
singular values of K — C' are small, then the matrix £ in §4.2 necessarily has small
singular values. Hence, the invariant subspace corresponding to the small singular
values of C'is not much perturbed by preconditioning. We therefore expect that the
initial iterations of CGLS applied to the preconditioned system will produce a solution
that is a good approximation to the noise free solution f

5. Algorithmic issues. Our algorithm is as follows:

Algorithm 1: Solving T'f = ¢
1. Compute the generators for each submatrix K;; (see §5.3).
2.  For each i, determine the size m; of the partial factorization and
factor [{“ = PZL”D“U“QZ
Set P = diag(Py,...,P,), Q = diag(Q1,...,Qp), = = PTFj.
4. For ¢ = 1...n, determine the generators of the m; x m; leading

L ) K o
principal submatrix, K;;’ of K;; and let M; = 62 | (See

o

§4.3.)

5. Set M = diag(M,..., M,) and compute M ~! as in §5.3.

6. Compute an approximate solution § to M ~'Cy = M~z using a
few steps of CGLS where matrix vector products involving C' =
PTCQT are formed without forming C' itself (see §5.2).

7. The approximate solution in the original coordinate system is

f=S5FQ"y.

&)

A few comments about the algorithm are in order. First, the submatrices /K
the matrix M are never actually formed; with only the easily determined generators of

and

Ki(il) and its factors, we can compute matrix-vector products with M =1 in O(pnlgn)
operations (see §5.4). Second, when to stop the CGLS iteration in order to get the
best approximate solution is a well-studied but open question (for instance, see [16]
and the references therein). We do not solve this problem, but we consider other

algorithmic issues in the following subsections.
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5.1. Determining the size of the Ki(il). As shown in §4, the choices of the
parameters m; determine the number of clustered singular values in the preconditioned
system. Since p partial factorizations of size m; need to be computed, they influence
the amount of work per iteration. Most importantly, as Theorem 4.6 indicates, m* =
Zle m; influences the mixing of upper and lower subspaces. We use a simple heuristic
in our numerical experiments. Given the noisy right hand side vector g, let G be the
n X p matrix with entries given by Grj = g(r—1)n4; for 1 <k <n, 1 < j < p, and
let G be its two-dimensional, normalized, inverse discrete Fourier transform. Then it
is easy to show that the right hand side z defined in §3.2 results from stacking G by
columns. We sort the absolute values of z and determine m* to be the index of the
value, ctol, for which the Fourier coefficients start to level off. This is presumed to be
the noise level. Since G requires O(np(lgp + lgn)) operations to compute, the cost
involved in determining m™ is also O(np(lgp + lgn)) operations.

We choose the values m; using two slightly different methods, which we now
describe, and we compare the results in §6. In the first approach, each value m; is
defined as the number of elements in the ith column of G which are larger than ctol.
We call this method of computing the values m; the Fourier coefficient method. In
the second approach, a full factorization is performed on each block Kj;; so that all
the entries of each diagonal matrix Dy; are known. We set d to be the N length vector
comprised of the diagonals of the D;;, sort the elements in decreasing magnitude, and
set dtol to be the m*th largest magnitude element. The value m; is then defined to be
the number of diagonal entries in Dy; which have magnitude greater than dtol. This
is the d-selection method for computing the values m;.

The latter approach appears the more expensive of the two, requiring O(pn?)
operations to compute all values m;. However, we found that the entries of D;; decay
nearly monotonically so that the values m; could be similarly obtained by performing
the steps of the factorization of each block in parallel. That is, the first step of the
factorization is performed on all the blocks sequentially, then the second step on all
the blocks, and so forth, up to step j. Block K;; ceases to be factored after step
J when |(Dj;);;] is determined to be too small. Hence, with careful administration,
all values m; can be computed from the diagonal entries in Dy; as they accumulate
in O3°F_, m?) operations, where the values m; are almost identical to the values
obtained in our second approach.

5.2. Matrix vector products with C. Recall that C is related to the original
BTTB matrix T through a sequence of fast orthogonal transforms and permutation
matrices described in §3.2. As was mentioned in the introduction, matrix vector
products involving T can be computed in O(np(lgn + lgp)) operations. Tt follows
that matrix vector products involving C' can also be computed in O(np(lgn + lgp))
operations without ever having to compute the entries of C.

5.3. Computing the preconditioner. By Property 3, Kj; satisfies the dis-
placement equation (4) with with Q@ = 57 and © = S_;. Therefore using Property 1

KZ»(Z»l) satisfies
QKW — kW, = 4T

where Q; and ©; are the leading principal submatrices of PTQP; and Q;0Q7 respec-
tively, and Agl) and Bl(l) contain the first m; rows of PZ»TfL and QZTBZ respectively
(refer to §4.3).
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(D=1

i 18

DT G
(19) KW-1_ (M) ,
0 — 1<j,k<n

where éj and @y are the elements of © and Q that appear in ©; and €2y respectively

and, from (6), the vectors l‘;i) and w,(j) are rows of XZ»(I) and I/Vi(l) defined as

From Property 5, the expression for the entries of K

KPx® = 40 T b — T
Computing XZ»(I) and I/Vi(l) costs O(m?) operations, given the factorization of Ki(il)
and the matrices Agl) and Bgl). Since M~! is a block-diagonal matrix given by
M- = diag(~]\41_~1, .. .,Mp_l), it takes O(>_F_, m?) operations to precompute given
the matrices A;, B; fori = 1,..., p. Since these generator matrices require O(by,plg p+
pnlgn) operations to precompute (refer to the beginning of §4.3), the total cost for
precomputing M~ is O(byplgp + prlgn + > 7_ m?) operations.

5.4. Applying the preconditioner. Since M ' is block diagonal, to compute

M ™'y requires the p computations Ki(il)_lri where r; is the length m; subvector of

7 beginning at index ip + 1. Using Algorithm 2 of [22], we compute each Ki(il)_lri
stably in O(nlgn) operations. Thus each application of the preconditioner costs at
most a total of O(pnlgn) operations. (If p,, < p of the values m; are nonzero, as
we often found in practice, the cost reduces to O(pm,nlgn) operations.) Since matrix
vector products involving the BTTB matrix 7' can be computed in O(np(lgp + lgn))

operations, each iteration of CGLS costs O(np(lgp + lgn)) operations.

6. Numerical results. In this section we summarize results of our algorithm
on two test problems using Matlab and IEEE floating point double precision arith-
metic. Our measure of success in filtering noise is the relative error, the 2-norm of the
difference between the computed estimate f and the vector f corresponding to zero
noise, divided by the 2-norm of f In each case, we apply the CGLS iteration with
block Cauchy-like preconditioner with m* = 3"*_, m;. The value m* = 0 corresponds
to no preconditioning.

6.1. Example 1. As mentioned in the introduction, BTTB matrices often arise
in two dimensional image processing problems. For our first example, we began by
generating the 64 x 64 image shown in Figure 1. The tower in the image is composed
of 3 concentric circles, centered at row 46, column 38, of radii 6,4, and 2, with values
2,4, and 8, respectively. The 3 x 3 spike in the image has its upper left corner at row
39, column 29 and has height 10. The vector f was then generated by stacking the
image by columns. We consider the BT'TB matrix 7" with entries given by

(=D —{ cem DO 5 <i k155
1—7 -

0 otherwise,

where ¢ is a normalization constant. This matrix is the one used in [13] and has a
condition number of about 10''. Since this is a BTT B matrix, only the first row and
first column of the 2n blocks T;, —n < 7 < n, need to be generated and stored.

We next computed § = Tf, and used the Matlab randn function to generate a

vector e of length N. We then scaled e such that the noise level llz

' Tl was equal

18
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Fic. 1. Original image, Ezample 1.

to 1072, Finally, we set the noisy data g to ¢ = § + e¢. The blurred, noisy image,
whose columns are the p length consecutive subvectors of g, is shown in Figure 2, and
its sorted absolute 2-D Fourier coefficients are displayed, along with the vector d of
§5.1, in Figure 3. An appropriate cutoff m* and the values m; were determined as
explained in §5.1.

We conducted experiments for different values of m* using both of the methods for
choosing the m;. The solid line in Figure 4 shows the convergence of CGLS in relative
error at each iteration. When m* = 0 (that is, no preconditioning is used), a minimum
relative error of 3.41 x 107! is achieved at 90 iterations. The dashed line in Figure 4
shows the convergence behavior for a preconditioner determined using m* = 711 and
using the d-method of determining m;. After 13 iterations, a relative error value of
3.53x 10! was reached. The dotted line shows the convergence using a preconditioner
which was determined by setting m* = 583 and using the Fourier coefficient method of
determining m;. This was the best preconditioner that could be determined using this
selection method; after 13 iterations a relative error of 3.86 x 10~! was reached. For
comparison, the dashed-dot line illustrates the optimal convergence behavior of right-
preconditioned scheme in [13], where the cutoff was determined to be 725 eigenvalues.
This method achieves a minimum relative error value of 3.49 x 10~! in 9 iterations.

6.2. Example 2. As a second image processing example, we consider the BTTB
matrix 7' = Ty ® Ty where Tp is the 32 x 32 Toeplitz matrix with diagonals (see [20])

. 2

sin(g)

hy = B
0 otherwise

0 < [k|] < By

where ¢ is a normalization constant, By, = 2, and By, the bandwidth of Ty, is set to
5. The condition number of T is approximately 1.6 x 108.

We then generate f by forming the image shown in Figure 5 and stacking it by
columns. The image itself was created by truncating to radius 8 a 2-D Gaussian with
standard deviation 30 centered at row 20, column 19, and multiplying the values by
40. A 3 x 3 spike of height 40 with upper left corner at row 13, column 10, was also
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Fi1Gc. 2. Blurred, noisy image, FExample 1.
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Fi1G. 3. Solid line shows 2-D Fourier coefficients of the noisy data sorted in order of decreasing
magnitude. Dashed line shows diagonal entries obtained during factorization, sorted in order of
decreasing magnitude, Frxample 1.
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iteration

F1G. 4. Relative error in computed solutions for Example 1. Solid line shows convergence when
m* = 0; dashed line shows convergence for our preconditioner with m* = 711 using the d-selection
method; dotted line shows convergence when m* = 583 using the Fourier coefficient selection method;
dash-dotted line shows the convergence behavior for the preconditioning scheme in [13] with the cutoff
at 725 eigenvalues.

added. Next, we set ¢ = Tf + e, where e is a normally distributed random vector,
generated with the Matlab randn function, scaled so that the noise level was 1072
The blurred noisy image, whose columns are the consecutive p length subvectors of g,
is displayed in Figure 6 and its sorted absolute 2-D Fourier coefficients together with
the vector d are shown in Figure 7.

The solid line in Figure 8 shows the convergence of CGLS in relative error for
Example 2. With no preconditioning (i.e. m* = 0) CGLS required 49 iterations to
achieve its minimum relative error value of 2.54 x 107!, The dashed line in Figure 8
depicts the convergence of CGLS on the left preconditioned system using our precon-
ditioner with m* = 122 and where the d-method for selecting the m; is used. After 7
iterations, a value of 2.59 x 107! was achieved. The dotted line in the figure shows
the convergence behavior on the left preconditioned system when m* = 109 using the
Fourier coefficient method of determining m;. After 6 iterations, the minimum rela-
tive error of 2.66 x 107! was reached. In comparison, the dashed-dot line illustrates
the optimal convergence behavior of the right-preconditioned scheme in [13],where
the cutoff was determined to be 116 eigenvalues. This method achieves a minimum
relative error value of 2.53 x 10™! in 7 iterations.

In fact, we note that the matrices in Examples 1 and 2 are special examples of
BTTB matrices since they arise from tensor products of Toeplitz matrices. In the
case where 7' =171 @ Ty, Ty # 1%, the matrix K can be written as a tensor product
of a p x p matrix times an n x n Cauchy-like matrix. Thus, only the single n x n
Cauchy-like matrix needs to be factored to obtain the preconditioner. Therefore
it is easy to show that the cost of precomputing our preconditioner is reduced to
O(m? + plgp + nlgn + N) operations for this special case. Likewise, the cost of
precomputing the preconditioner in [13] reduces to O(plgp + nlgn + N) operations.

6.3. Example 3. In both Examples 1 and 2, the matrix 7" was symmetric and
its block bandwidth was small relative to the number p of blocks. Since unsymmetry
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Fic. 5. Original image, Example 2.
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Fi1Gc. 6. Blurred, noisy image, FExample 2.
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Fic. 7. Solid line shows 2-D Fourier coefficients of the noisy data sorted in order of decreasing
magnitude. Dashed line shows diagonal entries obtained during factorization, sorted in order of
decreasing magnitude, Frxample 2.
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F1G. 8. Relative error in computed solutions for Example 2. Solid line shows convergence when
m* = 0; dashed line shows convergence for our preconditioner with m* = 122 using the d-selection
method; dotted line shows convergence when m™* = 109 using the Fourier coefficient selection method;
dash-dotted line shows the convergence behavior for the preconditioning scheme in [13] with the cutoff
at 116 eigenvalues.
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Fi1G. 9. Blurred, noisy image, Example 3.

and larger bandwidth can be encountered in practice, we consider the non-symmetric
matrix with a larger block bandwidth as follows. We set t;l) and t;z) to be the length
32 vectors with entries given by

t;l) = cle(_'l(l_j)Q) if 7 <6 and 0 otherwise,

t;z) = cyel=20=0)%) if j <11 and 0 otherwise,

where ¢; and ¢s were normalization constants, and we set T to be the Toeplitz matrix
with first column ¢; and first row ¢, using the Matlab command 7' = toep(t(l),t(z)).
We then generate a matrix H as shown in Example 2 with By = 1 and B, = 12.
Finally, we form T" by tensor products:

T=HxT.

The condition number of T is 1 x 10°.

For this example we took the exact solution f to be same as in Example 2. Next,
we set ¢ = Tf—l— e, where e is a normally distributed random vector scaled so that the
noise level was 1073, The blurred, noisy image, whose columns are the consecutive
p length subvectors of g, is displayed in Figure 9. The sorted absolute 2-D Fourier
coefficients of g together with the vector d are shown in Figure 10.

The relative error plot in Figure 11 shows that with no preconditioning, CGLS
reaches its minimum relative error value of 1.05 x 10~! at 121 iterations. However,
using our preconditioner with m* = 576 and the d-selection method for determining
the m;, a relative error value of 1.06 x 10~! was reached in only 8 iterations. When
m* = 435 and the Fourier coefficient selection method is used to determine our pre-
conditioner, a relative error value of 1.44 x 10™! was reached in 9 iterations; after 30
iterations, the relative error was improved to 1.18 x 10!, In contrast, the precondi-
tioned iterative scheme in [13] could do no better than 1.24 x 10~ after 17 iterations
(the preconditioner which achieved this value was constructed using a cutoff of 574
eigenvalues).
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F1G. 10. Solid line shows 2-D Fourter coefficients of the noisy data sorted in order of decreasing
magnitude. Dashed line shows diagonal entries obtained during factorization, sorted in order of
decreasing magnitude, Fxample 3.

10

iteration

Fic. 11. Relative error in computed solutions for Ezxample 3. Solid line shows convergence
when m* = 0; dashed line shows convergence for our preconditioner with m* = 576 using the
d-selection method; dotted line shows convergemce when m* = 435 using the Fourier coefficient
selection method; dash-dotted line shows the convergence behavior for the preconditioning scheme in
[13] with the cutoff at 574 eigenvalues.
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6.4. Results Summary. We conducted several other experiments comparing
the effectiveness of our preconditioner with the effectiveness of the preconditioner
found in [13]. The experiments, which we now summarize, were conducted using
matrices of different sizes and structure, different original images, and various noise
levels. First, we found that in cases where the dimension of the transition subspace
was large relative to the dimension of the problem, while both preconditioners could
be successful in speeding convergence in the first few iterations (i.e. the cutoffs could
chosen to cluster the largest singular values) it was unlikely that either precondi-
tioned scheme could, within fewer 1terations, produce solutions whose relative errors
were comparable to those generated by unpreconditioned CGLS. We attribute this
phenomena to the fact that both preconditioners mixed too much noise into early it-
erates by clustering too many singular values without being able to reconstruct some
important components of the solution lying in the transition space.

As the ratio of block bandwidth to block size was increased, we found the BTCB
approximation to 7' did a much better job than the BCCB approximation to T' of
approximating the mid-range and small singular values of the matrix. We also found
this to be true when the matrix was blockwise unsymmetric. Consequently, our
preconditioner can show significant improvement for these types of problems over the
preconditioner in [13] when the cutoff, determined by the noise level| is large enough
to include some mid-range singular values, as evidenced in Example 3. For larger noise
levels, there was no consistent or significant advantage to using one precondition over
the other. We therefore particularly recommend our preconditioner when 7' is block
unsymmetric, has a ratio of block bandwidth to block size larger than say 1/8, and
in other such cases when we expect that the T. Chan BCCB matrix approximation
to T" will fail to approximate T" well on the block level.

Examples 1 and 2 show that when the block bandwidth is small relative to block
size, the matrix is symmetric, and the dimension of the upper subspace is small
relative to N, the optimal preconditioner in [13] can produce solutions with slightly
smaller relative error in somewhat fewer iterations than our optimal preconditioner.
It is important to remember that both preconditioners were sensitive to the choice of
cutoff so finding the optimal preconditioner is difficult in practice. Also, the cost to
initialize our preconditioner in Examples 1 and 2 is of the same order of magnitude
as the initialization cost of the preconditioner in [13].

In short, our preconditioner never performs much worse than the preconditioner
in [13] and can perform much better in some cases.

7. Conclusions. We have developed an efficient algorithm for computing regu-
larized solutions to discrete ill-posed problems involving BTTB matrices. Our algo-
rithm uses an orthogonal transform to transform the BTTB matrix and its BTCB
approximant to Cauchy-like matrices whose blocks are Cauchy-like. It then iterates
using the CGLS algorithm on the left preconditioned system, where the precondi-
tioner was determined using size m; partial factorizations with pivoting on each of
the p blocks of the transformed BTCB matrix. By exploiting properties of the trans-
formation, we showed each iteration of CGLS costs O(np(lgn + lgp)) operations for
a Cauchy-like system with p blocks of size n.

The theory developed in §4 predicts that for many types of BI'TB matrices, the
preconditioner determined in the course of Gu’s fast, modified, complete pivoting
algorithm can be expected to cluster the largest singular values around one and to
keep the small singular values small while leaving the upper and lower subspaces un-
mixed. Thus, CGLS produces a good approximation to the noise free solution within
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a small number of iterations. Our results indicate that the algorithm is both efficient
and practical with the truncation parameters m; chosen using our second heuristic.
Finally, the results indicate that our preconditioned method is competitive with the
preconditioned method of [13] in terms of both the number of iterations required to
reach a reasonable regularized solution and the amount of work per iteration.

We note that this preconditioner can also be applied in situations where the matrix
T is only block Toeplitz and the blocks are not necessarily Toeplitz. In this case the
diagonals of block H; of the BTCB matrix H will be the T. Chan approximation to
block T; given by the formula (see [5], for instance)

o1 i
A = = 3 T 1=0,....p— 1.
j—k=i( mod n)
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