Show simple item record

dc.contributor.advisorBlankenship, G.L.en_US
dc.contributor.authorSaydy, L.en_US
dc.date.accessioned2007-05-23T09:40:32Z
dc.date.available2007-05-23T09:40:32Z
dc.date.issued1987en_US
dc.identifier.urihttp://hdl.handle.net/1903/4730
dc.description.abstractA lower and upper bound approach on the optimal mean square error is used to study the asymptotic behavior of one dimensional nonlinear filters. Two aspects are treated: (1) The long time behavior (t Ġ. (2) The asmptotic behavior as a small parameter Ġ0. Lower and upper bounds that satisfy Riccati equations are derived and it is shown that for nonlinear systems with linear limiting systems, the Kalman filter designed for the limiting systems is asymptotically optimal in a reasonable sense. In the case of nonlinear systems with low measurement noise level, three asymptotically optimal filters are provided one of which is linear. In chapter 4, the stationary behavior of the Benes filter is investigated.en_US
dc.format.extent1319534 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.relation.ispartofseriesISR; MS 1987-8en_US
dc.subjectSystems Integrationen_US
dc.titleAsymptotic Behavior in Nonlinear Stochastic Filteringen_US
dc.typeThesisen_US
dc.contributor.departmentISRen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record