Show simple item record

Optimality Results for a Simple Flow Control Problem.

dc.contributor.authorMa, Dye-Jyunen_US
dc.contributor.authorMakowski, Armand M.en_US
dc.description.abstractThis paper presents a problem of optimal flow control for discrete-time M|M|l queues, where the decision-maker seeks to maximize the throughput subject to a bound on the average queue size. The problem is cast as a constrained Markov decision process and solved via Lagrangian arguments. The optimal strategy is shown to be a threshold policy which asturates the constraint. The method of analysis proceeds through the discounted version of the Lagrangian problems whose value functions are shown to be integer-concave. Dynamic Programming and stochastic comparison ideas constitute the main ingredients of the solution.en_US
dc.format.extent781531 bytes
dc.relation.ispartofseriesISR; TR 1987-169en_US
dc.titleOptimality Results for a Simple Flow Control Problem.en_US
dc.typeTechnical Reporten_US

Files in this item


This item appears in the following Collection(s)

Show simple item record