Convergence of Implicit Discretion Schemes for Linear Differential Equations with Application to Filter.

Thumbnail Image
Files
TR_86-25.pdf(779.05 KB)
No. of downloads: 354
Publication or External Link
Date
1986
Authors
Piccioni, M.
Advisor
Citation
DRUM DOI
Abstract
This paper presents a generalization of results on convergence and robustness of discretization schemes for nonlinear filtering obtained by Kushner. This is made possible by a general theorem on the convergence of semigroups of operators on a Banach space, which gives sufficient conditions for a semidiscretization scheme to remain convergent, once the time is implicitly discretized. As a consequence, sufficient conditions can be given for selecting space discretizations of the state process generator to construct computable nonlinear filters converging to the optimal one.
Notes
Rights