Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Variational Shape Optimization Framework for Image Segmentation

    Thumbnail
    View/Open
    umi-umd-3898.pdf (5.251Mb)
    No. of downloads: 4370

    Date
    2006-11-15
    Author
    Dogan, Gunay
    Advisor
    Nochetto, Ricardo H
    Metadata
    Show full item record
    Abstract
    Image segmentation is one of the fundamental problems in image processing. The goal is to partition a given image into regions that are uniform with respect to some image features and possibly to extract the region boundaries. Recently methods based on PDEs have been found to be an effective way to address this problem. These methods in general fall under the category of shape optimization, as the typical approach is to assign an energy to a shape, say a curve in 2d, and to deform the curve in a way that decreases its energy. In the end when the optimization terminates, the curve is not only at a minimum of the energy, but also at a boundary in the image. In this thesis, we emphasize the shape optimization view of image segmentation and develop appropriate tools to pursue the optimization in 2d and 3d. We first review the classes of shape energies that are used within the context of image segmentation. Then we introduce the analytical results that will help us design energy-decreasing deformations or flows for given shapes. We describe the gradient flows minimizing the energies, by taking into account the shape derivative information. In particular we emphasize the flexibility to accommodate different velocity spaces, which we later demonstrate to be quite beneficial. We turn the problem into the solution of a system of linear PDEs on the shape. We describe the corresponding space discretization based on the finite element method and an appropriate time discretization scheme as well. To handle mesh deterioration and possibly singularities due to motion of nodes, we describe time step control, mesh smoothing and angle width control procedures, also a topology surgery procedure that allows curves to undergo topological changes such as merging and splitting. In addition we introduce space adaptivity algorithms that help maintain accuracy of the method and reduce computational cost as well. Finally we apply our method to two major shape energies used for image segmentation: the minimal surface model (a.k.a geodesic active contours) and the Mumford-Shah model. For both we demonstrate the effectiveness of our method with several examples.
    URI
    http://hdl.handle.net/1903/4108
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility