Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Lipophilic G-Quadruplexes: Structural Studies, Post-Assembly Modification, and Covalent Capture

    Thumbnail
    View/Open
    umi-umd-3822.pdf (5.149Mb)
    No. of downloads: 3202

    Date
    2006-08-29
    Author
    Kaucher, Mark Steven
    Advisor
    Davis, Jeffery T
    Metadata
    Show full item record
    Abstract
    New nanostructures and functional materials are built through the self-assembly of guanosine. Both the size and regiochemistry of these noncovalent structures are controlled. Lipophilic G-quadruplexes are further stabilized through covalent capture techniques. These new nanostructures demonstrate the ability to bind cations and transport monovalent cation through phospholipid membranes. Diffusion NMR is demonstrated as a valuable technique in characterizing the size of lipophilic G-quadruplexes. Control over the size of self-assembled G-quadruplexes is demonstrated through modifying the guanosine nucleosides and the cation concentration. The solution structure of [G 8]16 4K+ 4pic- is determined to be a hexadecamer using diffusion NMR. Additionally, G 24 is also shown to form a hexadecamer G-quadruplex, which has an octameric intermediate structure. Two different octamers, a singly and doubly charged octamer, formed by G 29 are elucidated by diffusion NMR. The information gained from the diffusion NMR technique allowed for a better understanding of the self-assembly processes, especially regarding the roles of cation, anion and solvent. The use of a kinetically controlled exchange reaction to effect regioselective modification of a hydrogen-bonded assembly is discussed. The pseudo-regioselective exchange of isotopically labeled G 35-d into [G 8-h]16 4K+ 4pic- is demonstrated. Both the bound anion and cation can control the exchange of ligand into the different layers of a synthetic G-quadruplex. This regioselective exchange process allows for functionalized G-quadruplex structures to be built. Covalent capture of lipophilic G-quadruplex 60 with reactive groups on the periphery generates a unimolecular G-quadruplex 61. This unimolecular G-quadruplex 61 shows exceptional stability in nonpolar and polar solvents, even without the presence of cations. Furthermore, this unimolecular G-quadruplex transports monovalent cation across phospholipid membranes. The design of transmembrane transporters is of particular interest for their potential as new ion sensors, catalysts and anti-microbial agents.
    URI
    http://hdl.handle.net/1903/4074
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility