Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Photocurrent Spectroscopy of Pentacene Thin Film Transistors

    Thumbnail
    View/Open
    umi-umd-3847.pdf (3.042Mb)
    No. of downloads: 2552

    Date
    2006-09-25
    Author
    Breban, Mihaela
    Advisor
    Breban, Mihaela
    Metadata
    Show full item record
    Abstract
    We demonstrate the application of photocurrent modulation spectroscopy in characterizing the performance of organic thin-film transistors. A parallel analysis of the direct current and photocurrent voltage characteristics provides a model-free determination of the field-effect mobility and the density of free carriers in the transistor channel as a function of the applied gate voltage. Applying this technique to pentacene thin-film transistors demonstrates that the mobility increases as V$_g^{1/3}$. The free-carrier density is approximately 1/10 of the expected capacitive charge, and the mobility increases monotonically with the free carrier density, consistent with the trap and release model of transport. Also, the modulated photocurrent spectroscopy can be used as a probe of defect states in pentacene thin film transistors, measuring simultaneously the magnitude and the phase of the photocurrent as a function of the modulation frequency. This is accomplished by modeling the photo-carrier generation process as exciton dissociation via interaction with localized traps. Experimental data reveal a Gaussian distribution of localized states centered around 0.3 eV above the highest occupied molecular orbital. We also investigated the effect of the gate dielectric material with our probe and found that the position of the extracted gaussian slightly shifts, consistent with the expected image charge effect for Pn through the dielectric substrate. Also shifts in the gaussian position for samples fabricated with variable deposition conditions are correlated with changes in Pn morphology. The morphological differences between Pn films were also detected in current-voltage characteristics and photocurrent spectra. However, the origin of the ubiquitous 0.3 eV defect in Pn seems to be unrelated to structural differences in Pn films.
    URI
    http://hdl.handle.net/1903/3973
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility