Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Chemistry & Biochemistry
    • Chemistry & Biochemistry Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Chemistry & Biochemistry
    • Chemistry & Biochemistry Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Flexibility and Control of Protein-DNA Loops

    Thumbnail
    View/Open
    Kahn_drum.pdf (1.254Mb)
    No. of downloads: 1780

    Date
    2006-10
    Author
    Kahn, Jason D.
    Cheong, Raymond
    Edelman, Laurence M.
    Mehta, Ruchi A.
    Morgan, Michael A.
    Citation
    http://www.worldscinet/brl/brl.shtml
    Metadata
    Show full item record
    Abstract
    Protein-DNA loops are essential for efficient transcriptional repression and activation. The geometry and stability of the archetypal Lac repressor tetramer (LacI)-DNA loop were investigated using designed hyperstable loops containing lac operators bracketing a sequence-directed bend. Electrophoretic mobility shift assays, DNA cyclization, and bulk and single-molecule fluorescence resonance energy transfer (FRET) demonstrate that the DNA sequence controls whether the LacI-DNA loop forms a compact loop with positive writhe or an open loop with little writhe. Monte Carlo methods for simulation of DNA ring closure were extended to DNA loops, including treatment of variable protein hinge angles. The observed distribution of topoisomer products upon cyclization provides a strong constraint on possible models. The experiments and modeling imply that LacI-DNA can adopt a wide range of geometries but has a strong intrinsic preference for an open form. The flexibility of LacI helps explain in vivo observations that DNA looping is less sensitive to DNA length and shape than would be expected from the physical properties of DNA. While DNA cyclization suggests two pools of precursor loops for the 9C14 construct, single-molecule FRET demonstrates a single population. This discrepancy suggests that the LacI-DNA structure is strongly influenced by flanking DNA.
    Notes
    Combined research report and review article on our work in DNA looping. Presented at the Asia and Pacific Workshop on Biological Physics, Singapore, July 2006.
    URI
    http://hdl.handle.net/1903/3959
    Collections
    • Chemistry & Biochemistry Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility