Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Arousal and skilled motor performance: The mediating role of cerebral cortical dynamics

    Thumbnail
    View/Open
    umi-umd-3777.pdf (742.8Kb)
    No. of downloads: 2760

    Date
    2006-08-16
    Author
    Rietschel, Jeremy Carl
    Advisor
    Hatfield, Bradley D
    Metadata
    Show full item record
    Abstract
    Despite achievement of a highly skilled level of motor competence, elucidation of the multiple factors contributing to variability of motor performance remains somewhat enigmatic. The inverted-U hypothesis posits moderate levels of arousal as essential to optimal performance; this suggests that arousal may be a key player of this variability. The purpose of this study was to examine the psychophysiological concomitants of moderate as compared to low arousal. Specifically we hypothesized a decrease in coherence between the temporal lobes (T3-verbal-analytical processing & T4-visuo-spatial processing) and the motor planning region (Fz), accompanied by an increase in task performance. Fifteen college undergraduates (9 females, 6 males, mean age = 23.4, SD = 4.22) participated in two days of testing. Day one consisted of 340 trials of a novel visuomotor pointing task to achieve task competency. On the second day, EEG data were recorded during both a Performance Alone (PA) condition vs. a Social-Evaluation and Competition (SE&C) condition, which were counterbalanced. Coherence estimates were subjected to a 2 x 2 ANOVA comparing Condition x Hemisphere; post hoc testing was completed using paired-t tests. The arousal-manipulation check of the two experimental protocols (PA vs. SE&C) provided by the autonomic measures and self-reports indicated an increase from a low to moderate level of arousal during the SE&C condition. There was a statistical interaction between condition and hemisphere revealing reduced coherence during SE&C only between T4-Fz (t(14) = 3.084, p = 0.008). Additionally, there was a increase in motor performance (t(13) = 2.171, p = 0.049). Consistent with the inverted-U hypothesis and our predictions as stated for moderate arousal relative to performing alone, there was a subsequent increase in performance coupled with a decrease in coherence between the visuo-spatial and the motor-planning regions. In light of the significantly improved kinematics, the reduction in networking between these task relevant areas is seen as an adaptive refinement of cortico-cortical communication as one moves from low towards optimal arousal.
    URI
    http://hdl.handle.net/1903/3926
    Collections
    • Kinesiology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility