Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    System support for keyword-based search in structured Peer-to-Peer systems

    Thumbnail
    View/Open
    umi-umd-3740.pdf (950.2Kb)
    No. of downloads: 1471

    Date
    2006-08-07
    Author
    Gopalakrishnan, Vijay
    Advisor
    Bhattacharjee, Bobby
    Keleher, Pete
    Metadata
    Show full item record
    Abstract
    In this dissertation, we present protocols for building a distributed search infrastructure over structured Peer-to-Peer systems. Unlike existing search engines which consist of large server farms managed by a centralized authority, our approach makes use of a distributed set of end-hosts built out of commodity hardware. These end-hosts cooperatively construct and maintain the search infrastructure. The main challenges with distributing such a system include node failures, churn, and data migration. Localities inherent in query patterns also cause load imbalances and hot spots that severely impair performance. Users of search systems want their results returned quickly, and in ranked order. Our main contribution is to show that a scalable, robust, and distributed search infrastructure can be built over existing Peer-to-Peer systems through the use of techniques that address these problems. We present a decentralized scheme for ranking search results without prohibitive network or storage overhead. We show that caching allows for efficient query evaluation and present a distributed data structure, called the View Tree, that enables efficient storage, and retrieval of cached results. We also present a lightweight adaptive replication protocol, called LAR that can adapt to different kinds of query streams and is extremely effective at eliminating hotspots. Finally, we present techniques for storing indexes reliably. Our approach is to use an adaptive partitioning protocol to store large indexes and employ efficient redundancy techniques to handle failures. Through detailed analysis and experiments we show that our techniques are efficient and scalable, and that they make distributed search feasible.
    URI
    http://hdl.handle.net/1903/3892
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility