Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sigma-Delta Quantization: Number Theoretic Aspects of Refining Quantization Error

    Thumbnail
    View/Open
    umi-umd-3636.pdf (2.043Mb)
    No. of downloads: 831

    Date
    2006-07-18
    Author
    Tangboondouangjit, Aram
    Advisor
    Benedetto, John J.
    Metadata
    Show full item record
    Abstract
    The linear reconstruction phase of analog-to-digital (A/D) conversion in signal processing is analyzed in quantizing finite frame expansions for R^d. The specific setting is a K-level first order Sigma-Delta quantization with step size delta. Based on basic analysis, the d-dimensional Euclidean 2-norm of quantization error of Sigma-Delta quantization with input of elements in R^d decays like O(1/N) as the frame size N approaches infinity; while the L-infinity norm of quantization error of Sigma-Delta quantization with input of bandlimited functions decays like O(T) as the sampling ratio T approaches zero. It has been, however, observed via numerical simulation that, with input of bandlimited functions, the mean square error norm of quantization error seems to decay like O(T^(3/2)) as T approaches zero. Since the frame size N can be taken to correspond to the reciprocal of the sampling ratio T, this belief suggests that the corresponding behavior of quantization error, namely O(1/N^(3/2)), holds in the setting of finite frame expansions in R^d as well. A number theoretic technique involving uniform distribution of sequences of real numbers and approximation of exponential sums is introduced to derive a better quantization error than O(1/N) as N tends to infinity. This estimate is signal dependent.
    URI
    http://hdl.handle.net/1903/3793
    Collections
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility