Performance Analysis of Algebraic Soft-Decision Decoding of Reed-Solomon Codes

View/ Open
Date
2006-08-28Author
Duggan, Andrew S
Advisor
Barg, Alexander
Metadata
Show full item recordAbstract
We investigate the decoding region for Algebraic Soft-Decision Decoding (ASD) of Reed-Solomon codes in a discrete, memoryless, additive-noise channel. An expression is derived for the error radius within which the soft-decision decoder produces a list that contains the transmitted codeword. The error radius for ASD is shown to be larger than that of Guruswami-Sudan hard-decision decoding for a subset of low-rate codes. We then present an upper bound for ASD's probability of error, where an error is defined as the event that the decoder selects an erroneous codeword from its list. This new definition gives a more accurate bound on the probability of error of ASD. We also derive an estimate of the error-correction radius under multivariate interpolation decoding of a recent generalization of Reed-Solomon codes by F. Parvaresh and A. Vardy.