Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DISCRETE INVERSE CONDUCTIVITY PROBLEMS ON NETWORKS

    Thumbnail
    View/Open
    umi-umd-3375.pdf (483.1Kb)
    No. of downloads: 1492

    Date
    2006-04-30
    Author
    Foroozan, Farshad
    Advisor
    BERENSTEIN, CARLOS A
    Metadata
    Show full item record
    Abstract
    The purpose of this dissertation is to present a mathematical model of network tomography through spectral graph theory analysis. In this regard, we explore the properties of harmonic functions and eigensystems of Laplacians for weighted graphs (networks) with and without boundary. We prove the solvability of the Dirichlet and Neumann boundary value problems. We also prove the global uniqueness of the inverse conductivity problem on a network under a suitable monotonicity condition. As a physical interpretation to the discrete inverse conductivity problem, we define a variant of the chip-firing game (a discrete balancing process) in which chips are added to the game from the boundary nodes and removed from the game if they are fired into the boundary of the graph. We find a bound on the length of the game, and examine the relations between set of spanning weighted forest rooted in the boundary of the graph and the set of critical configurations of the chips.
    URI
    http://hdl.handle.net/1903/3542
    Collections
    • Computer Science Theses and Dissertations
    • Mathematics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility