Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SALAM: A SCALABLE ANCHOR-FREE LOCALIZATION ALGORITHM FOR WIRELESS SENSOR NETWORKS

    Thumbnail
    View/Open
    umi-umd-3326.pdf (1.390Mb)
    No. of downloads: 6946

    Date
    2006-04-26
    Author
    Youssef, Adel Amin Abdel Azim
    Advisor
    Agrawala, Ashok K
    Metadata
    Show full item record
    Abstract
    In this dissertation, we present SALAM, a scalable anchor-free protocol for localization in wireless sensor networks. SALAM can determine the positions of sensor nodes without any infrastructure support. We assume that each node has the capability to estimate distances to its corresponding neighbors, that are within its transmission range. SALAM allows to trade the accuracy of the estimated position against node transmission range and/or computational power. The application layer can choose from a whole range of different options, to estimate the sensor node's positions with different accuracy while conserving battery power. Scalability is achieved by dividing the network into overlapping multi-hop clusters each with its own cluster head node. Each cluster head is responsible for building a local relative map corresponding to its cluster using intra-cluster node's range measurements. To obtain the global relative topology of the network, the cluster head nodes collaboratively combine their local maps using simple matrix transformations. In order for two cluster heads to perform a matrix transformation, there must be at least three boundary nodes that belongs to both clusters (i.e. the two clusters are overlapping with degree 3). We formulate the overlapping multi-hop clustering problem and present a randomized distributed heuristic algorithm for solving the problem. We evaluate the performance of the proposed algorithm through analytical analysis and simulation. A major problem with multi-hop relative location estimation is the error accumulated in the node position as it becomes multi-hop away from the cluster head node. We analyze different sources of error and develop techniques to avoid these errors. We also show how the local coordinate system (LCS) affects the accuracy and propose different heuristics to select the LCS. Simulation results show that SALAM achieves precise localization of sensors. We show that our approach is scalable in terms of communication overhead regardless of the network size. In addition, we capture the impact of different parameters on the accuracy of the estimated node's positions. The results also show that SALAM is able to achieve accuracy better than the current ad-hoc localization algorithms.
    URI
    http://hdl.handle.net/1903/3496
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility