Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characterization of Fire Induced Flow Transport Along Ceilings Using Salt-Water Modeling

    Thumbnail
    View/Open
    umi-umd-3320.pdf (2.393Mb)
    No. of downloads: 2618

    Date
    2006-04-27
    Author
    Yao, Xiaobo
    Advisor
    Marshall, André W.
    Metadata
    Show full item record
    Abstract
    This research provides a detailed analysis of turbulent mixing and heat transfer in canonical fire plume configurations by using a quantitative salt-water modeling technique. The methodology of quantitative salt-water modeling builds on the analogy between salt-water flow and fire induced flow, which has been successfully used in the qualitative analysis of fires. Non-intrusive laser diagnostics, Planar Laser Induced Fluorescence (PLIF) and Laser Doppler Velocimetry (LDV), have been implemented to measure the dimensionless density difference and velocity in salt-water plumes. In the implementation of the PLIF technique, the salt-water concentration is measured through tracking a fluorescent dye tracer within the entire spatial domain of a planar section of the salt-water flow, which is diluted at the same rate as the salt water. The quantitative salt-water modeling technique has been validated by comparing it with real fire experiments and theoretical data. The scaling laws are also proved by varying the initial source strength or ceiling height in the impinging plume configuration. The detailed salt-water measurements provide insight into of the wall interactions and laminarization effects in the impinging plume configuration. Additionally, highly resolved measurements provide mean profiles and turbulent statistics which will be useful for validating and developing sub-grid scale models in Computational Fluid Dynamics (CFD) codes. Furthermore, an engineering heat transfer model is developed to predict the convective ceiling heat transfer from impinging plumes using the quantitative salt-water modeling technique along with an adiabatic wall modeling concept. The successful application of the adiabatic wall heat transfer model illustrates a well controlled method for studying the heat transfer issues in more complex fire induced flow configurations by using the quantitative salt-water modeling technique.
    URI
    http://hdl.handle.net/1903/3491
    Collections
    • Mechanical Engineering Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility