Thermo-Structural Influences on Optical Characteristics of Polymer Bragg Gratings
Files
Publication or External Link
Date
Authors
Advisor
Han, Bongtae
Citation
DRUM DOI
Abstract
The objective of this study is to investigate thermo-optical issues in polymer Bragg gratings. The first order thermo-optical model of a polymer Bragg grating is provided. The model was applied to investigate the thermo-optical behavior of the PMMA Bragg grating. The development of a thermo-optical model of an illuminated polymer fiber Bragg grating (PFBG), combining use of the coupled-mode theory with thermal conduction theory and the Transfer Matrix Method (TMM), is presented. The model is verified comparing predicted results with the measured values of the thermo-optical experiment. This model is applied to the prediction of the thermo-optical behavior of an intrinsically-heated and passively-cooled PMMA Fiber Bragg Grating illuminated by a LED and SMLDs and operating over a range of ambient temperatures. Parametric influences on the thermo-optic characteristics and the predictive accuracy of several simplifications in the Bragg Grating relations are also explored.