Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PHOTOLYTIC GENERATION OF NITRENIUM IONS: KINETIC STUDIES AND POLYMERIZATION REACTIONS

    Thumbnail
    View/Open
    umi-umd-2950.pdf (2.624Mb)
    No. of downloads: 4123

    Date
    2005-11-29
    Author
    Kung, Andrew Ching-An
    Advisor
    Falvey, Daniel E.
    Metadata
    Show full item record
    Abstract
    Nitrenium ions are highly reactive transient species that contain a positively charged and dicoordinate nitrogen atom. The nitrogen atom contains only six electrons in its valence shell and thus the nitrogen is electron deficient and bears a positive charge. Nitrenium ions are of interest due to their suspected role in carcinogenesis since amines are known to form covalent bonds to DNA. The synthesis and photolysis of 1-(N-methyl-N-(1-naphthyl)amino)-2,4,6-trimethylpyridinium tetrafluoroborate, by laser flash photolysis, allowed for the direct observation of N-methyl-1-naphthylnitrenium ion as well as measurements of N-methyl-1-naphthylnitrenium ion's lifetime and trapping rate constants. It was determined that N-methyl-1-naphthylnitrenium ion has an absorption maximum centered around 500 nm and a lifetime of 835 ns. The trapping rate constants with simple nucleophiles, such as chloride, alcohols, and amines, were determined to be on the order of 108 - 109 M-1s-1. These trapping rate constants were compared to other arylnitrenium ion systems to determine what factors contribute to a chemical's inherent carcinogenicity. The synthesis and photolysis of 1-(N-methyl-N-(2-naphthyl)amino)-2,4,6-trimethylpyridinium tetrafluoroborate was also performed. Although no transient intermediate was observed, products from photolysis are consistent with arylnitrenium ion products. Nitrenium ions are also of interest due to their possible role in the polymerization of aniline to form polyaniline (PANI). PANI is of interest because of it is an electronically conducting polymer with many commercial aspects and the mechanism of formation has been under dispute for decades. Although it is generally agreed that the initial dimerization step is due to radical cation coupling, the mechanism for aniline polymerization is argued as proceeding through either a radical cation mechanism or via a nitrenium ion mechanism. Synthesis of a photochemical precursors of an aniline dimer 4-(N-anilino)phenyl azide produced what is believed to be a 4-(N-anilino)phenylnitrenium ion which has an absorption maximum centered around 490 nm. Spectroscopic analysis by MALDI-TOF-MS and X-ray photoelectron spectroscopy (XPS), shows that PANI is a photoproduct. The extrapolated data and results from similar systems, supports the hypothesis that polymerization involves a nitrenium ion intermediate.
    URI
    http://hdl.handle.net/1903/3133
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility