Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The Low Temperature Magnetoconductance of Delta-Doped Silicon

    Thumbnail
    View/Open
    umi-umd-2767.pdf (4.938Mb)
    No. of downloads: 4228

    Date
    2005-08-05
    Author
    Sullivan, Dan Francis
    Advisor
    Wellstood, Frederick C
    Kane, Bruce E.
    Metadata
    Show full item record
    Abstract
    The low temperature electronic transport properties of delta-doped silicon are established here, in an effort to determine the technological limitations facing the construction of semiconductor wafers with monolayer doping profiles. Both phosphorous (Si:P) and boron (Si:B) delta-doped silicon wafers prepared by molecular beam epitaxy have been investigated. Devices fabricated from samples of these wafers were cooled to approximately 130 mK in a dilution refrigerator, where four wire resistance measurements were performed in the presence of magnetic fields both perpendicular and parallel to the plane of the devices. The data obtained was interpreted using the theory of weak localization. For Si:P samples, the effective thickness of the delta-doped region can be inferred by comparing the magnetoconductance signal in parallel magnetic fields to that of perpendicular fields. Using this technique on several different samples which were annealed at 850 C, an estimate of the diffusivity of phosphorus in silicon at this temperature is established. In addition, it is shown that the primary mechanism for the loss of quantum mechanical phase coherence in these samples at low temperatures is the electron-electron interaction, and provide evidence for lattice defects enhancing this dephasing. For Si:B samples, the spin-orbit interaction is shown to dominate the dephasing, and the temperature dependence of this interaction is found to be substantially different from that observed in Si:P devices. Based on these results, I conclude that specific epitaxial growth techniques must be followed if monolayer doping profiles are ever to be achieved in silicon. In addition, because this weak localization technique for measuring the thickness of delta-doped regions is highly sensitive and non-destructive, it may ultimately prove to be the most effective method yet established for probing ultra-thin doping profiles. Finally, several theoretical desiderata are established, which would enable a more accurate interpretation of experimental data.
    URI
    http://hdl.handle.net/1903/2973
    Collections
    • Physics Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility