Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Entomology
    • Entomology Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Entomology
    • Entomology Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Human biting mosquitoes and implications for West Nile virus transmission

    Thumbnail
    View/Open
    s13071-022-05603-1.pdf (2.432Mb)
    No. of downloads: 6

    External Link(s)
    https://doi.org/10.1186/s13071-022-05603-1
    Date
    2023-01-02
    Author
    Uelmen, Johnny A. Jr.
    Lamcyzk, Bennett
    Irwin, Patrick
    Bartlett, Dan
    Stone, Chris
    Mackay, Andrew
    Arsenault-Benoit, Arielle
    Ryan, Sadie J.
    Mutebi, John-Paul
    Hamer, Gabriel L.
    Fritz, Megan
    Smith, Rebecca L.
    Citation
    Uelmen, J.A., Lamcyzk, B., Irwin, P. et al. Human biting mosquitoes and implications for West Nile virus transmission. Parasites Vectors 16, 2 (2023).
    DRUM DOI
    https://doi.org/10.13016/kkb7-ee1q
    Metadata
    Show full item record
    Abstract
    West Nile virus (WNV), primarily vectored by mosquitoes of the genus Culex, is the most important mosquito-borne pathogen in North America, having infected thousands of humans and countless wildlife since its arrival in the USA in 1999. In locations with dedicated mosquito control programs, surveillance methods often rely on frequent testing of mosquitoes collected in a network of gravid traps (GTs) and CO2-baited light traps (LTs). Traps specifically targeting oviposition-seeking (e.g. GTs) and host-seeking (e.g. LTs) mosquitoes are vulnerable to trap bias, and captured specimens are often damaged, making morphological identification difficult. This study leverages an alternative mosquito collection method, the human landing catch (HLC), as a means to compare sampling of potential WNV vectors to traditional trapping methods. Human collectors exposed one limb for 15 min at crepuscular periods (5:00–8:30 am and 6:00–9:30 pm daily, the time when Culex species are most actively host-seeking) at each of 55 study sites in suburban Chicago, Illinois, for two summers (2018 and 2019). A total of 223 human-seeking mosquitoes were caught by HLC, of which 46 (20.6%) were mosquitoes of genus Culex. Of these 46 collected Culex specimens, 34 (73.9%) were Cx. salinarius, a potential WNV vector species not thought to be highly abundant in upper Midwest USA. Per trapping effort, GTs and LTs collected > 7.5-fold the number of individual Culex specimens than HLC efforts. The less commonly used HLC method provides important insight into the complement of human-biting mosquitoes in a region with consistent WNV epidemics. This study underscores the value of the HLC collection method as a complementary tool for surveillance to aid in WNV vector species characterization. However, given the added risk to the collector, novel mitigation methods or alternative approaches must be explored to incorporate HLC collections safely and strategically into control programs.
    URI
    http://hdl.handle.net/1903/29718
    Collections
    • Entomology Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility