Mid-Infrared Laser Driven Avalanche Ionization and Low Frequency Radiation Generation

Thumbnail Image
Publication or External Link
Schwartz, Robert Max
Milchberg, Howard
In this dissertation, we discuss the applications of intense mid-infrared laser interactions in three main topics. First, we demonstrate and discuss the remote detection of radioactive materials using avalanche breakdowns driven by picosecond, mid-infrared laser pulses. In the presence of radioactive materials, an enhanced population of free electrons and weakly bound ions are created in air. Laser driven avalanche ionization is a powerful tool for amplifying and detecting this weak signature, allowing for detection at standoff distances beyond the stopping distance of the radioactive particles. This technique can be applied more generally to the detection of any low density plasma. In the second section, we apply a similar method to measure laser ionization yields in atmospheric pressure gas across an extremely wide range. Finally, we demonstrate and discuss the generation of THz and low harmonics from two-color mid-infrared laser pulses. This technique allows for the generation of highly efficient, ultra-broadband coherent radiation.