Epidemiology and Fungicide Sensitivity of Grape Late Season Bunch Rots in the Mid-Atlantic
Files
Publication or External Link
Date
Authors
Advisor
Citation
DRUM DOI
Abstract
This project aims to improve the management of late season bunch rots of grape (LSBR) whichcan be caused by a wide range of fungal pathogens. LSBR collectively have been an increasing issue in Mid-Atlantic vineyards, severely affecting grape yield and quality. Despite intensive fungicide spray programs and cultural practices, severe LSBR epidemics threaten the budding Mid-Atlantic wine industry. The basic plant pathological variables of host, pathogen, and environment were investigated to improve knowledge of the diseases involved, and therefore improve management strategies. The most common causal agents of LSBR in the Mid-Atlantic were found to be Botrytis cinerea and Colletotrichum spp. and the species identity of less common fungi was also investigated. The next most prevalent fungi associated with LSBR, Alternaria alternata, Aspergillus uvarum, and Neopestalotiopsis rosae were evaluated for pathogenicity in field experiments through the artificial inoculation of grape clusters. Second, the sensitivity of A. uvarum, B. cinerea, and N. rosae to commonly used chemical classes of fungicides was tested. Lastly, the optimal infection conditions and timing for Colletotrichum spp. were evaluated in laboratory, field, and greenhouse experiments, resulting in a quantitative inoculum tracking technique and a disease prediction model. These experiments were focused on solving practical and important disease management issues experienced by local grape growers, while conducting novel research that was applicable to the broader science community. Beyond the increased knowledge of the etiology and epidemiology of LSBR, the conclusions of this research could lead to reformed LSBR management strategies with the elimination of unnecessary and ineffective fungicide applications, increased accuracy and timing of management efforts, and increased marketable grape yield.