Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    PERCEPTUAL GRAPHICS FOR EFFECTIVE VISUALIZATION

    Thumbnail
    View/Open
    umi-umd-2843.pdf (6.213Mb)
    No. of downloads: 2641

    Date
    2005-08-31
    Author
    Lee, Chang Ha
    Advisor
    Varshney, Amitabh
    Metadata
    Show full item record
    Abstract
    Current trends in 3D graphics point to a near future when our ability to generate 3D content will far surpass our ability to analyze it meaningfully. These trends have inspired us to improve the comprehensibility of 3D graphics rendering using insights from human perception of geometry and illumination. In this dissertation, we develop algorithms and systems to seamlessly integrate the low-level human visual system cues with object modeling and lighting for 3D graphics. Artists and illustrators have enhanced the perception of shape with discrepant lighting for centuries. Traditional graphics however assumes a model of consistent lighting. We have developed a lighting design system, that by relaxing the constraint of consistent lighting is able to convey a better depiction of shape. Our system for automatic lighting design, Light Collages, segments the objects into local surface patches and uses careful placement of highlights, shadows, and silhouettes on them to enhance shape perception. We have developed a spherical-harmonics-based formulation to achieve a 20-fold improvement in speed. Geometric processing in graphics has made significant advances over the last decade in defining and using mathematical measures of shape, such as curvature. However, less attention has been paid to the use of perception-inspired metrics for geometric processing. We have brought perception-inspired metrics to bear on the problem of processing and viewing for 3D graphics. We have developed the concept of scale-dependent mesh saliency for graphics. We have also explored how saliency can be used to prioritize operations in applications such as object simplification and to automatically compute desirable viewing parameters for 3D graphics applications. We believe that Perceptual Graphics could lead us in the direction of more effective graphics applications that not only use computational resources wisely, but also lift the burden of unnecessary rendered detail from the human visual system.
    URI
    http://hdl.handle.net/1903/2845
    Collections
    • Computer Science Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility