Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    EMERGENT NETWORK ORGANIZATION IN LINEAR AND DENDRITIC ACTIN NETWORKS REVEALED BY MECHANOCHEMICAL SIMULATIONS

    Thumbnail
    View/Open
    Chandrasekaran_umd_0117E_21817.pdf (6.897Mb)
    No. of downloads: 89

    Date
    2021
    Author
    Chandrasekaran, Aravind
    Advisor
    Papoian, Garegin A
    DRUM DOI
    https://doi.org/10.13016/7xna-u6lo
    Metadata
    Show full item record
    Abstract
    Cells employ networks of filamentous biopolymers to achieve shape changes and exert migratory forces. As the networks offer structural integrity to a cell, they are referred to as the cytoskeleton. Actin is an essential component of the cellular cytoskeleton. The organization of the actin cytoskeleton is through a combination of linear and branched filaments. Despite the knowledge of various actin-binding proteins and their interactions with individual actin filaments, the network level organization that emerges from filament level dynamics is not well understood. In this thesis, we address this issue by using advanced computer simulations that account for the complex mechanochemical dynamics of the actin networks. We begin by investigating the conditions that stabilize three critical bundle morphologies formed of linear actin filaments in the absence of external forces. We find that unipolar bundles are more stable than apolar bundles. We provide a novel mechanism for the sarcomere-like organization of bundles that have not been reported before. Then, we investigate the effect of branching nucleators, Arp2/3, on the hierarchical organization of actin in a network.By analyzing actin density fields, we find that Arp2/3 works antagonistic to myosin contractility, and excess Arp2/3 leads to spatial fragmentation of high-density actin domains. We also highlight the roles of myosin and Arp2/3 in causing the fragmentation. Finally, we understand the cooperation between the linear and dendritic filament organization strategies in the context of the growth cone. We simulate networks at various concentrations of branching molecule Arp2/3 and processive polymerase, Enabled to mimic the effect of a key axonal signaling protein, Abelson receptor non-tyrosine kinase (Abl). We find that Arp2/3 has a more substantial role in altering filament lengths and spatial actin distribution. By looking at conditions that mimic Abl signaling, we find that overexpression mimics are characterized by network fragmentation. We explore the consequence of such a fragmentation with perturbative simulations and determine that Abl overexpression causes mechanochemical fragmentation of actin networks. This finding could explain the increased developmental errors and actin fragmentation observed in vivo. Our research provides fundamental self-assembly mechanisms for linear and dendritic actin networks also highlights specific mechanochemical properties that have not been observed earlier.
    URI
    http://hdl.handle.net/1903/27800
    Collections
    • Chemistry & Biochemistry Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility