Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Physics
    • Physics Research Works
    • View Item
    •   DRUM
    • College of Computer, Mathematical & Natural Sciences
    • Physics
    • Physics Research Works
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new rhesus macaque assembly and annotation for next-generation sequencing analyses

    Thumbnail
    View/Open
    1745-6150-9-20.pdf (1.534Mb)
    No. of downloads: 18

    External Link(s)
    https://doi.org/10.1186/1745-6150-9-20
    Date
    2014-10-14
    Author
    Zimin, Aleksey V
    Cornish, Adam S
    Maudhoo, Mnirnal D
    Gibbs, Robert M
    Zhang, Xiongfei
    Pandey, Sanjit
    Meehan, Daniel T
    Wipfler, Kristin
    Bosinger, Steven E
    Johnson, Zachary P
    Tharp, Gregory K
    Marçais, Guillaume
    Roberts, Michael
    Ferguson, Betsy
    Fox, Howard S
    Treangen, Todd
    Salzberg, Steven L
    Yorke, James A
    Norgren, Robert B Jr
    Citation
    Zimin, A.V., Cornish, A.S., Maudhoo, M.D. et al. A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biol Direct 9, 20 (2014).
    DRUM DOI
    https://doi.org/10.13016/h1lv-ygss
    Metadata
    Show full item record
    Abstract
    The rhesus macaque (Macaca mulatta) is a key species for advancing biomedical research. Like all draft mammalian genomes, the draft rhesus assembly (rheMac2) has gaps, sequencing errors and misassemblies that have prevented automated annotation pipelines from functioning correctly. Another rhesus macaque assembly, CR_1.0, is also available but is substantially more fragmented than rheMac2 with smaller contigs and scaffolds. Annotations for these two assemblies are limited in completeness and accuracy. High quality assembly and annotation files are required for a wide range of studies including expression, genetic and evolutionary analyses. We report a new de novo assembly of the rhesus macaque genome (MacaM) that incorporates both the original Sanger sequences used to assemble rheMac2 and new Illumina sequences from the same animal. MacaM has a weighted average (N50) contig size of 64 kilobases, more than twice the size of the rheMac2 assembly and almost five times the size of the CR_1.0 assembly. The MacaM chromosome assembly incorporates information from previously unutilized mapping data and preliminary annotation of scaffolds. Independent assessment of the assemblies using Ion Torrent read alignments indicates that MacaM is more complete and accurate than rheMac2 and CR_1.0. We assembled messenger RNA sequences from several rhesus tissues into transcripts which allowed us to identify a total of 11,712 complete proteins representing 9,524 distinct genes. Using a combination of our assembled rhesus macaque transcripts and human transcripts, we annotated 18,757 transcripts and 16,050 genes with complete coding sequences in the MacaM assembly. Further, we demonstrate that the new annotations provide greatly improved accuracy as compared to the current annotations of rheMac2. Finally, we show that the MacaM genome provides an accurate resource for alignment of reads produced by RNA sequence expression studies.
    URI
    http://hdl.handle.net/1903/27688
    Collections
    • Physics Research Works

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility