Skip to content
University of Maryland LibrariesDigital Repository at the University of Maryland
    • Login
    View Item 
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    •   DRUM
    • Theses and Dissertations from UMD
    • UMD Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DEFINING THE HEMOSTATIC RESPONSE TO AN ORAL FAT LOAD BEFORE AND AFTER EXERCISE TRAINING.

    Thumbnail
    View/Open
    umi-umd-2652.pdf (1.163Mb)
    No. of downloads: 1148

    Date
    2005-07-21
    Author
    Paton, Chad Michael
    Advisor
    Hagberg, Jim
    Metadata
    Show full item record
    Abstract
    INTRODUCTION: Chronic hypertryglyceridemia is thought to be atherogenic and is associated with an elevated thrombotic potential. Aerobic exercise training is known to reduce plasma triglyceride (TG) levels and the purpose of this study was to determine the effect of a single, high-fat meal on markers of inflammation, coagulation, and fibrinolysis before and after exercise training. MATERIALS and METHODS: Eight subjects were tested for aerobic capacity, body composition, and postprandial lipemia (PPL), followed by 6-months of exercise training and final testing. Blood samples were obtained every 30-minutes following the lipemic challenge for measurement of free fatty acid (FFA), TG, insulin (Ins), and glucose (Glu). Hemostatic variables including factor VII activity (FVIIa), tissue factor pathway inhibitor-factor Xa complex (TFPI/Xa), and plasminogen activator inhibitor-1 (PAI-1) antigen / activity were assessed at 0, 2, and 4 hours postprandial, as well as leukocyte interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and PAI-1 gene expression among 4 subjects during the lipemic challenge. RESULTS: The exercise training was of sufficient intensity to increase aerobic capacity (p < 0.0001) and improve body composition (p = 0.04). There were no differences between tests among PPL responses of FFA, TG, Ins, or Glu, however the main effect mean TG response averaged across all time-points was lower at final testing (139 ± 19 mgdl-1) versus baseline (154 ± 24 mgdl-1) (p = 0.02). Furthermore, the 4-hour averages for total fat oxidation rate increased by 68% (p = 0.01) and total carbohydrate oxidation rate decreased by 29% (p = 0.009) from baseline to final testing. IL-6 and PAI-1 gene expression were undetectable in the Paxgene® blood samples, however PAI-1 antigen / activity, FVIIa, TFPI/Xa, and TNF-α gene expression were all improved following exercise training after adjusting for confounders. CONCLUSION: Aerobic exercise training reduces the potential for coagulation, improves fibrinolytic potential, and reduces leukocyte TNF-α gene expression following the ingestion of a high fat meal.
    URI
    http://hdl.handle.net/1903/2716
    Collections
    • Kinesiology Theses and Dissertations
    • UMD Theses and Dissertations

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility
     

     

    Browse

    All of DRUMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister
    Pages
    About DRUMAbout Download Statistics

    DRUM is brought to you by the University of Maryland Libraries
    University of Maryland, College Park, MD 20742-7011 (301)314-1328.
    Please send us your comments.
    Web Accessibility