Show simple item record

Laser wakefield accelerator experiments: coherent injection radiation and optical field ionization-based plasma waveguides

dc.contributor.advisorMilchberg, Howard Men_US
dc.contributor.authorMiao, Boen_US
dc.description.abstractLaser wakefield electron accelerators (LWFAs) can support accelerating gradients three orders of magnitude higher than conventional radio frequency linear accelerators, enabling compact laser-driven devices. In this dissertation, I explore two regimes of LWFA physics, one at high plasma density, and the other at low density. The first part of this thesis characterizes bright broadband coherent radiation emitted during wakefield acceleration driven by femtosecond laser interaction with high, near-critical density plasma. Detailed measurement is presented of the radiation spectrum, polarization and angular distribution. The results are consistent with synchrotron radiation emission from laser-assisted injection into wakefields, with this picture supported by particle-in-cell simulations. The second part of this thesis demonstrates the use of high intensity Bessel beams of various orders for generating low density plasma waveguides that guide high intensity laser pulses over tens of centimeters. Methods are presented for Bessel beam generation and focus optimization using adaptive optics.en_US
dc.titleLaser wakefield accelerator experiments: coherent injection radiation and optical field ionization-based plasma waveguidesen_US
dc.contributor.publisherDigital Repository at the University of Marylanden_US
dc.contributor.publisherUniversity of Maryland (College Park, Md.)en_US
dc.subject.pqcontrolledPlasma physicsen_US
dc.subject.pquncontrolledBessel beamen_US
dc.subject.pquncontrolledLaser plasma acceleratoren_US
dc.subject.pquncontrolledLaser wakefielden_US
dc.subject.pquncontrolledPlasma waveguideen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record